
MA3H7

Control Theory

Masoumeh Dashti and Andrew Stuart

January 3, 2015



Contents

1 Introduction 4

1.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background Material 14

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Inner-Products and Norms . . . . . . . . . . . . . . . . . . . . 15

2.3 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Linear ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Nonautonomous Fundamental Solution . . . . . . . . . 25

2.5.2 Autonomous Fundamental Solution . . . . . . . . . . . 28

2.6 Nonlinear ODEs . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Stability of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7.1 Linear Systems . . . . . . . . . . . . . . . . . . . . . . 36

2.7.2 Lyapunov Functions . . . . . . . . . . . . . . . . . . . 37

2.7.3 Lyapunov Function for Linear Systems . . . . . . . . . 42

2.7.4 Linearization . . . . . . . . . . . . . . . . . . . . . . . 45

2.8 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.9 Calculus of Variations . . . . . . . . . . . . . . . . . . . . . . 56

3 Controllability 66

3.1 Discrete-Time Linear Systems . . . . . . . . . . . . . . . . . . 66

3.2 Continuous-Time Systems: Setup . . . . . . . . . . . . . . . . 69

3.3 Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.1 Unrestricted Controls . . . . . . . . . . . . . . . . . . 72

3.3.2 Symmetric and Convex Controls . . . . . . . . . . . . 77

3.3.3 Restricted Controls . . . . . . . . . . . . . . . . . . . . 79

2



3.4 Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . 88

4 Stability and Stabilization 95
4.1 Discrete-Time Linear Systems . . . . . . . . . . . . . . . . . . 96
4.2 Controllability and Stability for Linear Systems . . . . . . . . 97
4.3 Stabilizability of Linear Systems . . . . . . . . . . . . . . . . 99
4.4 Linear Control Problems With Scalar Control . . . . . . . . . 100
4.5 Stabilizability of Nonlinear Systems . . . . . . . . . . . . . . 106

5 Observing and Filtering 110
5.1 Discrete Time: Observability and Duality . . . . . . . . . . . 110
5.2 Continuous Time: Observability and Duality . . . . . . . . . 113
5.3 Discrete Time: Kalman Filter . . . . . . . . . . . . . . . . . . 117
5.4 Discrete Time: Kalman Smoother . . . . . . . . . . . . . . . . 121

6 Optimal Control 128
6.1 Minimum Energy Controls . . . . . . . . . . . . . . . . . . . . 129
6.2 Matching Data . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7 References 138

3



Chapter 1

Introduction

1.1 Basic Concepts

We start by considering a system of ordinary differential equations (ODEs)

ẋ = f(x, t), t > 0

x(0) = x0.

Here x0 ∈ Rn and f : Rn × R+ → Rn and the unknown solution is a
function x : [0,∞) → Rn. If f is independent of time t the equation is
termed autonomous; otherwise it is nonautonomous.

We interpret these equations as a model describing the evolution of the
state x of some system. The state is the minimum information required
to characterize the system in the sense that, if x(t0) is known then x(t) is
uniquely determined for t > t0.

Suppose now that we generalize the above setting to a situation where

ẋ = f(x, t, u), t > 0

x(0) = x0

where x0 ∈ Rn as before, and now f : Rn×R+×U → Rn for some U ⊆ Rm.
We are interested in governing the evolution of the state x by means of the
function u.
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We call {u(t), t ≥ 0} a control and the corresponding state {x(t), t ≥ 0} is
the response. Consider the set of admissible controls

U =
{
u : [0,∞)→ U ⊆ Rm

∣∣∣u(·) is measurable
}
. (1.1)

The control problem is to determine a u ∈ U in order to induce a particular
outcome for the response x. For example it might be desirable to choose u
so that x ends up at a given target in a finite time, or asymptotically as time
tends to infinity.

Two particular control problems will be of interest to us:

• An open loop control is a function u ∈ U , chosen to depend only on the
initial condition x0, which ensures some particular control objective;
we will concentrate on controlling the system to reach the origin in a
finite time.

• A closed loop control is defined by choosing u = c(x), for a function
c : Rn → U , with the view of ensuring the stability of an equilibrium
point x; this is also referred to as a feedback control.

In addition to controlling the system, we will also be interested in observing
the system. In particular it is frequently the case that the initial condition
x(0) is not known and that observations of the system are made to compen-
sate for this fact. We will consider observation functions y : [0,∞) → Rp
given by

y(t) = Dx(t), t > 0

with D ∈ Rp×n. Typically we think of p < n or, if p = n, then the case
where D is not invertible. Thus it is not possible to determine the state
of the system x(t) at time t directly from y(t) at time t. Instead we ask
two related questions concerning determination of the system when x0 is
unknown, or incompletely known.

• The first, termed observability, concerns the question of whether, for
some T > 0, we can determine x0, given {y(t)}t∈[0,T ] and {u(t)}t∈[0,T ].

• The second, termed filtering, concerns the question of how to best es-
timiate x(T ) given {y(t)}t∈[0,T ] and {u(t)}t∈[0,T ] and, relatedly, whether
our estimate approaches the true x(T ) as T grows.
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Finally we will also be interested in optimal control: attempting to attain a
given control objective whilst minimizing some measure of the cost such as
the time taken or the L2 norm of the control. For example we might replace
the set of admissible controls U in (1.1) to the more restrictive set defined
by the Hilbert space

U = L2
(
(0, T );Rm

)
, (1.2)

and then seek an admissible control which achieves the objective x(T ) = 0
and minimizes the norm in U.

Throughout the notes we will also consider discrete-time analogues of the
questions described above. We study the map

xk+1 = f(xk, k, uk), k ∈ Z+.

The reader can readily generalize the concepts of open and closed loop con-
trols, observability and filtering and optimal control to this situation – see
Exercises 1-4 and 1-5.

1.2 Examples

Example 1.2.1. rocket

We start with an example which illustrates open loop control. Consider a
vehicle, driven along a straight horizontal path powered by a rocket. Define:

• s(t): the distance of the vehicle from the origin at time t;

• ṡ(t) the velocity of the vehicle at time t;

• u(t) the force applied to the vehicle by the rocket;

• m the mass of the vehicle.

Given the initial position and velocity of the vehicle, the control problem is
to find out how to fire the engine to bring the vehicle to rest at the origin,
in some specified time T .

Newton’s second law gives us the equation

ms̈ = u (1.3)
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and we may write this equation as a first order system as follows. First let

x =

(
s
ṡ

)
.

Then
ẋ = Ax+Bu

where

A =

(
0 1
0 0

)
and B =

(
0

m−1

)
.

Mathematically, the control problem is to choose u so that x(T ) = 0. We
formulated the specific example as a first order system because it is more
natural to develop a general theory in this form.

We consider open loop control. First we consider the control problem with
unrestricted controls, so that U = R in the definition of U . For this problem
it is then possible to control the system to the origin in any finite positive
time T > 0. To see this consider the function

s(t) =
t3

T 3

(
v0T + 2s0

)
− t2

T 2

(
2v0T + 3s0

)
+ v0t+ s0.

This function satisfies

s(0) = s0, ṡ(0) = v0, s(T ) = 0, ṡ(T ) = 0.

Substituting into the equation (1.3) gives the control

u(t) = ms̈(t)

=
6mt

T 3

(
v0T + 2s0

)
− 2m

T 2

(
2v0T + 3s0

)
. (1.4)

This control will steer the system from the initial position/velocity of s0/v0
into the origin, with zero position and velocity, in the finite time T > 0.

However, in practice, the size of the engine, and maximum stress allowed on
the vehicle, impose bounds on the control. For example we might wish to solve
the control problem whilst insisting that u is chosen so that −M ≤ u(t) ≤M
for all t ≥ 0, where M denotes the maximum absolute value of the control.
Then the admissible controls (1.3) are defined by taking U = [−M,M ] in
the definition of U . Notice that, by choosing T large enough, we can ensure
that the control given by (1.4) is admissible and so it is certainly possible to
control this system provided that sufficiently long time-intervals are allowed
(see Exercise 1-6).
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Example 1.2.2. inverted pendulum

We now illustrate a problem arising in closed loop control. Consider an
inverted pendulum and define

• length `;

• mass m;

• gravity g;

• angle φ(t) to the upward vertical position;

• torque u(t) applied at the pivot.

We assume that all of the mass m is concentrated at the end, and that
friction is negligible. Given the initial position and velocity of the pendulum,
the control problem is to choose the torque so as to bring the pendulum to
the vertical position, asymptotically for large time. Note that, in the absence
of a torque, the vertical configuration for the pendulum is unstable.

By Newton’s second law for angular momentum we have

m`2φ̈ = mg` sin(φ) + u.

Choose units in which m`2 = mg` = 1. Then for small φ we have the
approximate equations of motion

φ̈− φ = u.

We work with this linear equation, and note that, if written as a first order
system, it is a control problem as above with n = 2 and m = 1. We may
write it as the system

ẋ = Ax+Bu

where

x =

(
φ

φ̇

)
, A =

(
0 1
1 0

)
and B =

(
0
1

)
.

Now consider a closed loop control given by

u(t) = −αφ(t)− βφ̇(t)
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where α, β > 0 are scalar parameters. We aim to choose these parameters to
satisfy the control objective of stabilization. The equations of motion become

φ̈+ βφ̇+ (α− 1)φ = 0.

The solution φ = φ̇ = 0 is stable if α > 1 and unstable if α < 1 since

φ(t) = c+ exp(γ+t) + c− exp(γ−t)

where

γ± =
1

2

(
−β ±

√
β2 − 4(α− 1)

)
.

Both the real parts of γ± are negative if α > 1, leading to stability, whilst if
α < 1 then γ+ is positive, leading to instability.

Note that we may also write the closed loop control in matrix form. We have

u = Cx

where

C =
(
−α −β

)
and then

ẋ = (A+BC)x.

Written abstractly we see that the objective is to choose the design matrix C
in the closed loop control in order to ensure that A + BC has spectrum in
the left-half plane.

Example 1.2.3. signal processing

Suppose we wish to find a signal x†(t) : [0,∞) → Rn which is known to
satisfy the linear equation

ẋ† = Ax†, x†(0) = x†0 (1.5)

but that we do not know the initial condition x†0 ∈ Rn. To compensate for
this we are given observations y ∈ Rp of the system defined via

y(t) = Dx†(t), (1.6)

with D ∈ Rp×n for some p < n. In an attempt to determine x† we consider
the control system

ẋ = Ax+Bu
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with a closed loop control u chosen to equal y − Dx, where y is the data.
This is an unrestricted control and so U = Rp. We then obtain the equation

ẋ = Ax+B
(
y −Dx). (1.7)

This equation combines our knowledge of the model, as it has elements of
equation (1.5), as well as the data y given by (1.6). It is natural to ask
whether e(t) := x(t)− x†(t) converges to 0 as t increases since then the true
signal will be determined. Notice that x† itself satisfies

ẋ† = Ax† +B
(
y −Dx†)

since the last term is identically zero. Thus e satisfies

ė =
(
A−BD)e

and the convergence of e to zero can be studied via the spectral properties
of the matrix A − BD; indeed this is a general case of the specific set-up
considered at the end of Example 1.2.2, with C = −D.

Example 1.2.4. robot

Consider the problem of specifying the velocity u(t) of a robot, moving along
a predetermined straight line with coordinate x(t), in such a fashion that the
robot ends at the origin after one time unit, given starting position x(0) = x0.
Here n = m = 1 and we consider unrestricted open loop controls, so that
U = R. The governing equation is simply

ẋ = u, x(0) = x0 (1.8a)

x(1) = 0. (1.8b)

There are an uncountably infinite number of solutions to this open loop con-
trol problem: choose any differentiable function x(t) satisfying x(0) = x0 and
x(1) = 0 and then choose the control u(t) = ẋ(t). However, what if we now
impose the constraint that we wish to find the controller which minimizes the
square integral of the control over the time interval [0, 1]? We introduce the
Hilbert space U = L2

(
(0, T );R

)
and seek to minimize J : U→ R+ given by

J(u) :=
1

2

∫ 1

0
u(s)2ds,

subject to (1.8) being satisfied. Since equation (1.8) implies that u = ẋ, this
implies that we should minimize

I(x) :=
1

2

∫ 1

0
|ẋ(s)|2ds (1.9)
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subject to x(0) = x0 and x(1) = 0. If we ask that ẋ (and hence u) is square
integrable on (0, 1) then this problem is solved by choosing x to satisfy the
equation

ẍ = 0, (1.10a)

x(0) = x0 x(1) = 0. (1.10b)

The solution is x(t) = (1− t)x0, corresponding to control u(t) = −x0.

1.3 Overview

In Example 1.2.1 we considered a linear control problem with n = 2 and
m = 1 and two specific choices of admissible control set, determined by the
choices U = R and U = [−M,M ]. In both cases any initial state x(0) = x0
can be steered to the origin in finite time, although the length of the time
interval depends on M , the bound on the admissible controls, in the second
case. It is not true, however, that all systems can be controlled in this
way. Characterizing those x0 which can be steered to the target is known
as the controllability problem and is discussed in Chapter 3. That chapter is
devoted to open loop control and we study controls from the admissible set U
given by (1.1) and both unrestricted controls, with U = Rm, and restricted
controls with U = [−1, 1]m.

In Example 1.2.2 a closed loop control was employed to stabilize an unstable
equilibrium point. More general stability notions, and conditions for sta-
bilization, are the subject of Chapter 4. Closed-loop controls are the main
focus of this chapter.

Example 1.2.3 is prototypical of the problem of filtering which we introduce
in Chapter 4, and then discuss in more detail in Chapter 5.

Choosing an optimal control based on some cost criterion, as in Example
1.2.4, is the subject of optimal control theory introduced in Chapter 5 in
discrete time and then discussed in detail in Chapter 6. Here we work with
admissible controls which are square-integrable functions from U given by
(1.2).

Chapter 2 contains a range of background material in linear algebra, analysis,
ordinary differential equations, stability theory, probability theory and the
calculus of variations. We will not cover this material sequentially, but rather
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we will dip into it as needed as the course progresses sequentially through
Chapters 3–6.

Exercises

Exercise 1-1. Consider the system

ẍ+ x = u

with x(0) = x0 and ẋ(0) = v0. Find an unrestricted control u which ensures
that x(T ) = ẋ(T ) = 0.

Exercise 1-2. Consider the scalar equation

ẋ = ax+ bu

where a, b > 0 are constants. Consider a closed loop controller in the form
u = cx, for constant c. Under what conditions on the scalars b and c does
x(t)→ 0 as t→∞.

Exercise 1-3. Consider I given by (1.9). Assume that x ∈ C2([0, 1];R) and
satisfies x(0) = x0 and x(1) = 0. Let h ∈ C2([0, 1];R) with h(0) = h(1) = 0.
Let ε 6= 0 and show that

I(x+ εh) = I(x)− ε
∫ 1

0
ẍ(s)h(s)ds+ ε2I(h).

Deduce that, for all such functions h, I(x + εh) is minimized as a function
of x, for ε sufficiently small, by choosing ẍ = 0 and x(0) = x0, x(1) = 0.

Exercise 1-4. Consider the discrete-time system

xn+1 − xn = un

with x0 = X.

i) Show that, for any integer N > 0, there is an unrestricted control
sequence {un}N−1n=0 such that xN = 0.
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ii) Find the unrestricted control which achieves xN = 0 and minimizes∑n−1
n=0 u

2
n.

iii) Assume that X < 0 and that the controls are restricted so that un ∈
[0, 1]. Show that the control objective xN = 0 can only be achieved if
N ≥ −X.

Exercise 1-5. Generalize the concepts of open and closed loop controls,
observability and filtering to the discrete-time situation.

Exercise 1-6. Consider U given by (1.1) with m = 1 and U = [−M,M ].
Show that control (1.4) is admissible for T large enough.
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Chapter 2

Background Material

This chapter gathers together a range of mathematical tools which will be
used throughout. Section 2.1 describes some basic notational conventions,
and then section 2.2 describes the norms and function spaces that we use
throughout. Sections 2.3, 2.4 and 2.8 concern linear algebra, analysis and
probability respectively. Sections 2.5, 2.6 and 2.7 concern differential equa-
tions overviewing linear equations, nonlinear equations and stability theory
respectively. Section 2.9 concerns the calculus of variations.

2.1 Notation

We use R and C to denote the real and complex numbers respectively. Non-
negative reals are denoted by R+ := {x ∈ R|x ≥ 0}. The positive integers
are denoted by N and the set of all integers, including negative numbers and
zero, is Z = {· · · ,−2,−1, 0, 1, 2, · · · }. Non-negative integers are denoted by
Z+ = {0, 1, 2, · · · }.
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2.2 Inner-Products and Norms

Throughout these notes we use the Euclidean inner product on Cr given by

〈x, y〉 =
n∑
j=1

xjyj ∀x, y ∈ Cr.

This induces the Euclidean norm

|x| =

√√√√( r∑
j=1

|xj |2
)
, ∀x ∈ Cr.

We also use | · |∞ to denote the infinity norm on Cr:

|x|∞ = max
1≤j≤n

|xj |.

These definitions are also used, with the natural simplifications, on Rr.

For matrices A ∈ Rp×r we will use the Frobenius norm given by

‖A‖ =

√√√√( p,r∑
j=1,k=1

|aj,k|2
)
.

We define the operator norm induced by the Euclidean norm, namely

|A| = sup
|x|=1

|Ax|.

Note that for operators norms |AB| ≤ |A| · |B| and hence |Ak| ≤ |A|k.

We will also require infinite dimensional normed vector spaces from time

to time. In particular we will consider Banach spaces
(
X, ‖ · ‖

)
: complete

normed vector spaces. Throughout we use B(x; ε) to denote a ball in X of
radius ε centred at x ∈ X:

B(x; ε) := {x′ ∈ X : ‖x− x′‖ < ε}.

The mostly widely used example of a Banach space in these notes is the
space C([0, T ];Rr) of continuous functions on [0, T ] taking values in Rr.

On occasion it will be useful to use the Hilbert space structure which arises

from adding an inner-product to our Banach space. Let
(
H, 〈·, ·〉, ‖ · ‖

)
15



denote a Hilbert space. Thus ‖h‖2 = 〈h, h〉. If Hi, i = 1, 2 are Hilbert spaces
and L : H1 → H2 is a linear operator then the adjoint of L is the operator
L∗ : H2 → H1 defined by

〈L∗a, b〉 = 〈a, Lb〉

for all a ∈ H2 and b ∈ H1. The simplest example is the Euclidean space Rr
found by restricting the complex Euclidean space above to reals. Another
commonly occuring example of a Hilbert space arising in these notes is the
space L2([0, T ];Rr) of square integrable functions on [0, T ] taking values in
Rr with inner-product

〈a, b〉 =

∫ T

0
aT (s)b(s)ds.

Other examples are the space H1([0, T ];Rr) with inner-product

〈a, b〉H1 = 〈a, b〉+
〈da
dt
,
db

dt

〉
and the space H1

0 ([0, T ];Rr) with inner-product

〈a, b〉H1 =
〈da
dt
,
db

dt

〉
.

Finally we will sometimes use the Hilbert space H := L2([0, T ];Rr)×Rp with
inner-product defined as follows. Let a1, b1 ∈ L2([0, T ];Rr) and a2, b2 ∈ Rp
so that (a1, a2) ∈ H and (b1, b2) ∈ H. Then the inner-product is defined as

〈(a1, a2), (b1, b2)〉 = 〈a1, b1〉L2 + 〈a2, b2〉Rp .

2.3 Linear Algebra

Definition 2.3.1. A symmetric matrix A ∈ Rn×n is positive-definite (resp.
negative-definite) if 〈v,Av〉 > 0 (resp. < 0) for all v ∈ Rn\{0}. A symmetric
matrix A ∈ Rn×n is positive semi-definite (resp. negative semi-definite) if
〈v,Av〉 ≥ 0 (resp. ≤ 0) for all v ∈ Rn.

Thus whenever we refer to a matrix as being definite in one of these four
ways we are implicitly stating that the matrix is symmetric.

Definition 2.3.2. The rank of a matrix G ∈ Rp×q is the number of linearly
independent columns.
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Theorem 2.3.3. The rank of G and of GT are identical: the number of
linearly indepenent rows and columns of a matrix G ∈ Rp×q is the same.

Let g(j) ∈ Rp denote the jth column of G; thus 1 ≤ j ≤ q.

Theorem 2.3.4. Consider a matrix G ∈ Rp×q. Then

(i) rankG ≤ min{p, q};

(ii) rankG < p if and only if there is a non-zero vector y ∈ Rp which is
orthogonal to every column of G;

(iii) if p ≤ q then rankG = p if and only if there is a matrix H ∈ Rp×p,
made of columns of G, with detH 6= 0;

(iv) if rankG = p then there is a set of vectors z(j) ∈ Rp such that
∑q

j=1 g
(j)(z(j))T =

I.

Proof. (i) The first item follows from the fact that the number of columns is
equal to q, so that the number of linearly independent columns is less than
or equal to q; and similarly the number of rows is equal to p, so that the
number of linearly independent rows is less than or equal to p. Since the
rank can be computed row-wise or column-wise, and the answer is the same,
the result follows.

(ii) The second item follows from noting that rankG < p if and only if there
is a linear combination of the p rows of G which returns the zero vector in
Rq:

p∑
i=1

yig
(j)
i = 0, 1 ≤ j ≤ q,

with y = (y1, · · · , yp)T not identically zero. This is equivalent to the condi-
tion that 〈y, g(j)〉 = 0 for 1 ≤ j ≤ q.

(iii) For the third item note that, since p ≤ q, rankG ≤ p. Furthermore
rankG = p if and only if there are p linearly independent columns {g(kj)}pj=1

with kj ∈ {1, · · · , q}. If H = (g(k1), · · · , g(kp)) then detH 6= 0 if and only if
the p columns are linearly independent. The result follows.
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(iv) For the final item note that, if rankG = p then for every unit vector
ei ∈ Rp there is a set of real numbers {zi,j}qj=1 such that

q∑
j=1

zi,jg
(j) = ei, 1 ≤ i ≤ p.

This can be written succintly as

q∑
j=1

g(j)
(
z(j)
)T

= I

where z(j) ∈ Rp has ith entry zi,j .

Definition 2.3.5. Given a matrix A ∈ Rr×r, a vector w ∈ Cr is an eigen-
vector and λ ∈ C is an eigenvalue of A if

Aw = λw and w 6= 0. (2.1)

A vector v ∈ Cr is a generalized eigenvector corresponding to λ, if there
exists ` ∈ N such that (A− λI)`v = 0 and (A− λI)`−1v 6= 0. The case ` = 1
corresponds to an eigenvector.

Definition 2.3.6. Given a matrix A ∈ Cr×r we define the characteristic
polynomial of A as

pA(z) := det(zI −A)

=
r∑
j=0

ajz
j .

Note that ar = 1 by construction.

The eigenvalues of A are the roots of the polynomial pA and, using this, the
following may be proved:

Theorem 2.3.7. Cayley-Hamilton Theorem . Let pA be the char-
acteristic polynomial of A ∈ Rr×r. Then pA(A) = 0. From this it fol-
lows that Ar may be written as a linear combination of the set of matrices
{I, A,A2, · · · , Ar−1} as

Ar = −
r−1∑
j=0

ajA
j .
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We recall some facts concerning the (real) Jordan Canonical Form. We
need the following:

Theorem 2.3.8. Let {λi}mi=1 be the eigenvalues of matrix A ∈ Rn×n, not
counting multiplicities; thus m ≤ n. Then, corresponding to the eigenvalue
λi, there are ki generalized eigenvectors of A, for integer ki ∈ {1, . . . , n};
furthermore

∑m
i=1 ki = n. The n generalized eigenvectors v(i) can be chosen

to be linearly independent and hence span Rn. Consequently the matrix V =
(v(1), · · · , v(n)) is invertible.

Remarks 2.3.9. On occasion (see Theorem 2.5.4) it will also be useful to
express the eigenvalues {λi}ni=1 counting multiplicities. Corresponding to
each eigenvalue λi there is then a generalized eigenvector v(i) and an integer
`i such that (A− λiI)`iv(i) = 0 and (A− λiI)`i−1v(i) 6= 0.

For arbitrary A ∈ Rn×n there exists nonsingular Q ∈ Rn×n such that

Q−1AQ = Ã :=


J1 0 · · · 0 0
0 J2 · · · 0 0
...
0 0 · · · Jm−1 0
0 0 · · · 0 Jm


for real square block matrices Jk whose dimensions sum to n. In the nota-
tion of Theorem 2.3.8, block Ji corresponds to eigenvalue λi of A and has
dimension ki.

If ki = 1 and the eigenvalue is real then Ji = λi whilst for ki > 1 and real
eigenvalue we have

Ji =



λi 0 0 · · · 0

1 λi
. . .

. . . 0

0
. . .

. . . 0 0

0 0
. . . λi 0

0 0 · · · 1 λi


.
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If λi = αi + ιβi, βi 6= 0, ι2 = −1 and αi, βi ∈ R then

Ji =



Ri 0 0 · · · 0

I2 Ri
. . .

. . . 0

0
. . .

. . . 0 0

0 0
. . . Ri 0

0 0 · · · I2 Ri


with

I2 =

(
1 0
0 1

)
, Ri =

(
αi −βi
βi αi

)
.

We now describe a very useful, special, matrix:

Definition 2.3.10. A matrix A ∈ Rn×n is a companion matrix if it has the
form

A :=


0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 0 1
−a0 · · · · · · · · · −an−1

 (2.2)

for some vector a = (a0, . . . , an−1)
T ∈ Rn.

Theorem 2.3.11. Set an = 1. The characteristic polynomial of the com-
panion matrix A given in Definition 2.3.10 is

pA(z) := det(zI −A)

=

n∑
j=0

ajz
j .

Theorem 2.3.12. Let A,B, P ∈ Rn×n with P invertible. Then:

1. det(AB) = det(A) det(B);

2. det(P−1) =
(
det(P )

)−1
;

3. det(PAP−1) = det(A).

Proof of the preceding two theorems is left as Exercise 2-18.
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2.4 Analysis

Let
(
X, ‖ · ‖

)
be a Banach space, that is a complete normed vector space.

Definition 2.4.1. A sequence {xk}k∈Z+ in X converges strongly to x ∈ X
if ‖x− xk‖ → 0.

Definition 2.4.2. We use the notation ∂Ω to denote the boundary of a set
Ω ⊆ Rn. This is the set of points x ∈ Ω for which both B(x; ε) ∩ Ωc and
B(x; ε)∩Ω are non-empty for all ε > 0. We use the notation Int Ω to denote
the interior of Ω: the set of points for which B(x; ε) ⊆ Ω for some ε > 0.

Definition 2.4.3. Let X,Z be Banach spaces and B ⊂ X an open set; then
F : B → Z is Fréchet differentiable at x0 ∈ B if there exists a bounded linear
operator A : X→ Z such that

lim
‖h‖→0

‖h‖−1
(
‖F (x0 + h)− F (x0)−Ah‖

)
= 0.

The operator A is called the Fréchet derivative of F at x0.

Theorem 2.4.4. Implicit Function Theorem Let F : (x, y) ∈ Rn×Rn →
F ∈ Rn be continuously differentiable and satisfy

F (0, 0) = 0, detDyF (0, 0) 6= 0.

Then there exists θ > 0 and a function x ∈ Rn 7→ Γ ∈ Rn such that Γ(0) = 0,
Γ is continuous at 0 and F

(
x,Γ(x)

)
= 0 for any x ∈ B(0; θ).

Proof. Define D ∈ Rn×n and E ∈ Rn×n by D := DxF (0, 0), E := DyF (0, 0)
Then define G : Rn × Rn → Rn by

G(x, y) = E−1
(
F (x, y)−Dx

)
− y.

Since F is continuously differentiable, G has the same property. We also
have

G(0, 0) = 0, DxG(0, 0) = 0, DyG(0, 0) = 0.

Therefore, we can find η small enough so that, for any (x, y) ∈ B(0; η) ×
B(0; η), we have

‖DxG(x, y)‖ ≤ 1

2
,

‖DyG(x, y)‖ ≤ 1

2
,

‖G(x, y)‖ ≤ 1

2

(
‖x‖+ ‖y‖

)
.
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Now for each x ∈ B(0; η) define

H(x, ·) : y 7→ −E−1Dx−G(x, y)

and choose θ ∈ (0, η) small enough so that(
‖E−1D‖+

1

2

)
θ <

1

2
η.

Then, for any x ∈ B(0; θ) and y ∈ B(0; η),

‖H(x, y)‖ ≤ ‖E−1D‖‖x‖+
1

2

(
‖x‖+ ‖y‖

)
≤
(
‖E−1D‖+

1

2

)
‖x‖+

1

2
‖y‖

≤ η.

From this it follows that H(x, ·) : B(0; η) 7→ B(0; η) for any x ∈ B(0; θ).

Having established that H(x, ·) maps a closed subset into itself, it is natural
to attempt to use the Contraction Mapping Theorem 2.4.6, which follows
below. Thus we show that H(x, ·) is a contraction on B(0; η) – see Definition
2.4.5. We have

‖H(x, y)−H(x, z)‖ = ‖G(x, y)−G(x, z)‖

=
∥∥∥∫ 1

0

d

ds
G
(
x, sy + (1− s)z

)
ds
∥∥∥

=
∥∥∥∫ 1

0
DyG

(
x, sy + (1− s)z

)
(y − z)ds

∥∥∥
≤
∫ 1

0
‖DyG

(
x, sy + (1− s)z

)
‖ds‖y − z‖

≤ 1

2
‖y − z‖.

Hence H is a contraction on B(0; η) and maps B(0; η) into itself. Hence there
is a unique fixed point y? = Γ(x) ∈ B(0; η) of H(x, ·), for all x ∈ B(0; θ).
Since H(0, 0) = G(0, 0) = 0 we have Γ(0) = 0. To see that Γ is continuous
we note that

‖Γ(x)‖ = ‖H
(
x,Γ(x)

)
‖

= ‖E−1Dx+G
(
x,Γ(x)

)
‖

≤ ‖E−1D‖‖x‖+
1

2
‖+

1

2
‖Γ(x)‖
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and therefore, re-arranging,

‖Γ(x)‖ ≤
(

2‖E−1D‖+ 1
)
‖x‖.

‖Γ(x)− Γ(0)‖ ≤ ‖Γ(x)‖ ≤
(

2‖E−1D‖+ 1
)
‖x‖.

Thus Γ is continuous.

Definition 2.4.5. Let
(
X, ‖ · ‖

)
be a Banach space and B ⊆ X a closed

subset. A mapping T : B → B is a contraction on B if there exists λ ∈ [0, 1)
such that, for all x1, x2 ∈ B, ‖T (x1)− T (x2)‖ ≤ λ‖x1 − x2‖.

Theorem 2.4.6. Contraction Mapping Theorem If T is a contraction
on B then there is a unique solution of the equation T (x) = x in B. Fur-
thermore there is C > 0 such that the iteration xk+1 = T (xk) with x0 ∈ B
satisfies ‖xk − x‖ ≤ Cλk‖x0 − x‖.

Definition 2.4.7. A subset Ω of a vector space is symmetric if x ∈ Ω implies
−x ∈ Ω.

Definition 2.4.8. A subset Ω of a vector space is convex if x, y ∈ Ω and
λ ∈ [0, 1] imply λx+ (1− λ)y ∈ Ω.

We now discuss further structure which arises from the Hilbert space setting.

Let
(
H, 〈·, ·〉, ‖ · ‖

)
denote a Hilbert space.

Definition 2.4.9. A sequence {hk}k∈Z+ in H converges weakly to h ∈ H if,
for all ` ∈ H,

〈hk, `〉 → 〈h, `〉.

We write hk ⇀ h.

Recall (Definition 2.4.1) that a sequence {hk}k∈Z+ in H converges strongly
to h ∈ H if ‖h−hk‖ → 0. We then write hk → h. Strong convergence implies
weak convergence, but the converse is not true.

Theorem 2.4.10. Every bounded sequence {hk}k∈Z+ in H contains a weakly
convergent subsequence in H.

Theorem 2.4.11. Let C ⊂ H be closed, bounded and convex. Every sequence
{hk}k∈Z+ in C contains a weakly convergent subsequence with limit in C.
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Theorem 2.4.12. If hk ⇀ h then

lim inf
k→∞

‖hk‖2 ≥ ‖h‖.

We say that the function x 7→ ‖x‖2 is weakly lower semicontinuous.

Proof.

‖hk‖2 = ‖h+ (hk − h)‖2

= ‖h‖2 + 2〈h, hk − h〉+ ‖hk − h‖2

≥ ‖h‖2 + 〈h, hk − h〉.

By weak convergence we have 〈h, hk − h〉 → 0 as hk → h and the desired
result follows.

2.5 Linear ODEs

Consider the system

ẋ = Ax+ a, for almost all t ∈ [0, T ] (2.3a)

x(0) = x0, (2.3b)

with A(t) ∈ Rn×n, a(t) ∈ Rn for any t > 0 and with solution x(t) ∈ Rn, any
t > 0.

A key role in what follows is played by the matrix equation

Ṡ = AS, for almost all t ∈ [0, T ] (2.4a)

S(0) = I; (2.4b)

The matrix-valued function S : R+ → Rn×n is called the fundamental solu-
tion.

We define a solution of (2.3) to be a solution of the integral equation

x(t) = x0 +

∫ t

0
A(s)x(s)ds+

∫ t

0
a(s)ds. (2.5)

Likewise we define a solution of (2.4) to be a solution of the integral equation

S(t) = I +

∫ t

0
A(s)S(s)ds. (2.6)
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We start by studying the nonautonomous fundamental solution, where A
may depend on time t, and then specialize to the autonomous case, where
A is constant.

Remarks 2.5.1. We work on a fixed interval [0, T ] but, under the assump-
tions made here, T may be chosen arbitrarily in R+.

2.5.1 Nonautonomous Fundamental Solution

In the general nonautonomous setting we have the following result.

Theorem 2.5.2. In the system (2.3) assume that the entries of A(·), a(·)
are locally integrable. Then:

1. there exists exactly one function x : [0, T ] → Rn, T < ∞, with abso-
lutely continuous elements solving (2.3);

2. there exists exactly one function S : [0, T ] → Rn×n, T < ∞, with
absolutely continuous elements solving (2.4);

3. the matrix S(t) is invertible for any t ∈ [0, T ] and the unique solution
of (2.3) is written as

x(t) = S(t)x0 +

∫ t

0
S(t)S−1(s)a(s)ds, t ∈ [0, T ] (2.7)

and satisfies

x(t) = S(t)S(t0)
−1x(t0) +

∫ t

t0

S(t)S−1(s)a(s)ds, t ∈ [0, T ]. (2.8)

Proof. 1). Solution of equation (2.3) is defined to be solution of the integral
equation (2.5). Since A(s) is locally integrable ∃T1 > 0 such that∫ T1

0
|A(s)|ds = α ∈ (0, 1).

In fact we may choose a sequence Tj →∞ such that∫ Tj+1

Tj

|A(s)|ds = α.
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To see that the sequence accumulates at infinity note that, if the sequence
were to accumulate at T ? <∞ then, with T0 = 0,∫ T ?

0
|A(s)|ds =

∞∑
j=0

∫ Tj+1

Tj

|A(s)|ds =

∞∑
j=0

α =∞

contradicting local integrability.

For t ∈ [0, T1] define L by

(
Lx
)
(t) = x0 +

∫ t

0
a(s)ds+

∫ t

0
A(s)x(s)ds.

The operator L defines a continuous transformation from X := C([0, T1];Rn)
into itself. Recall that X is a Banach space when equipped with the norm

‖x‖ := sup
0≤t≤T1

|x(t)|,

where | · | denotes the Euclidean norm on Rn, and also the induced matrix
norm on Rn×n. We now show that L is a contraction on X because, for any
x, y ∈ X, we have

‖Lx− Ly‖ = sup
0≤t≤T1

∣∣(Lx)(t)− (Ly)(t)
∣∣

≤
(∫ T1

0
|A(s)|ds

)
sup

0≤t≤T1
|x(t)− y(t)|

= α‖x− y‖

which establishes that L is a contraction on X since α < 1. Hence x = Lx
has a unique solution in X by the contraction mapping principle (Theorem
2.4.6). But the equation x = Lx is of course simply the integral equation
equivalent to (2.3) and the existence of a unique solution on [0, T1] follows.
Consider T1 as the initial time and arguing similarly on the interval [T1, T2]
we extend existence and uniqueness to [0, T2]. We proceed inductively on
[Tj , Tj+1] to get the result on any interval [0, T ] with T <∞.

2). Having obtained existence and uniqueness of solutions of (2.3), we define

S(t) as follows. Let x
(i)
0 = [0, · · · , 0, 1, 0, · · · , 0]T , choose a = 0 and let x(i)(t)

be the resulting solution of (2.3). Then define

S(t) =
(
x(1)(t), x(2)(t), · · · , x(n)(t)

)
.

26



By construction this is the the solution to (2.4).

3). Assume for contradiction that S(t) is not invertible for all t > 0 and let
T0 ∈ [0, T ] be the first time at which S fails to be invertible, noting that T0
is strictly positive. This is because a matrix S is invertible if and only if
detS 6= 0 and because S(0) = I we have detS(0) = 1. By continuity of the
solution S(t) in t, and continuity of the function det : Rn×n → R, we deduce
that detS(t) > 0 for some interval t ∈ [0, T0).

For t ∈ [0, T0) we have

0 =
d

dt

(
S(t)S−1(t)

)
=
(dS(t)

dt

)
S−1(t) + S(t)

d

dt

(
S−1(t)

)
= A(t) + S(t)

d

dt

(
S−1(t)

)
.

Rearranging gives the identity

d

dt

(
S−1(t)

)
= −S−1(t)A(t), t ∈ [0, T0).

Now let y(t) solve the equation

ẏT = −yTA, for almost all t ∈ [0, T ]

y(0) = y0.

By an argument similar to that used in the proof of 1.) it follows that this
equation has a unique solution and, hence, so too does the matrix equation

Φ̇ = −ΦA, for almost all t ∈ [0, T ]

Φ(0) = I.

Clearly, then, by uniqueness, we have S−1(t) = Φ(t). But limt→T−
0

det Φ(t)

is finite and so detS(T0) 6= 0.

Having existence and uniqueness of x(t), together with invertibility of S(t),
establishing the identities (2.7) and (2.8) are the remaining steps in the proof.
From (2.7) we see that x(0) = x0 so that the initial condition is satisfied.
From (2.8) we have

S−1(t)x(t) = S−1(t0)x(t0) +

∫ t

t0

S−1(s)a(s)ds
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and differentiating gives( d
dt
S−1(t)

)
x(t) + S−1(t)

d

dt
x(t) = S−1(t)a(t)

and using the expression above for the derivative of S−1(t) we obtain

−S−1(t)A(t)x(t) + S−1(t)
d

dt
x(t) = S−1(t)a(t).

Rearranging and multiplying through by S(t) shows that

d

dt
x(t) = A(t)x(t) + a(t).

Thus the solution of (2.8) is also the solution of (2.3). The proof is complete.

2.5.2 Autonomous Fundamental Solution

We now develop some theory relevant to the case of autonomous linear sys-
tems: more precisely, we study the case where A ∈ Rn×n is a constant
matrix independent of time. Consider the following definition of the matrix
exp(At):

S(t) = exp(At) :=
∞∑
k=0

1

k!
Aktk. (2.9)

We first show that this sum is well-defined, and we then show that it coincides
with the preceding definition of S(t) from Theorem 2.5.2, when specialized
to the autonomous case. Writing eAt = exp(At) we have the following:

Theorem 2.5.3. Let A ∈ Rn×n be a constant matrix. Then the matrix
series (2.9) for the matrix exponential eAt converges and satisfies

• etAesA = e(t+s)A;

•
(
etA
)−1

= e−tA;

• d
dt

(
etA
)

= AetA;

• AetA = etAA.
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Thus S(t) = eAt coincides with S(t) appearing in Theorem 2.5.2 and solving
(2.4). Furthermore the unique solution of the equation (2.3) can, in this
case, be written as

x(t) = etAx0 +

∫ t

0
e(t−s)Aa(s)ds. (2.10)

Proof. To see that the infinite sum is well-defined, note that for the matrix
norm | · | induced by the Euclidean norm we have

|S(t)| ≤
∞∑
k=0

1

k!
|Ak|tk

≤
∞∑
k=0

1

k!
|A|ktk

= exp(|A|t)
<∞.

In fact, the same argument shows that, for all t ∈ [0, T ], |S(t)| ≤ exp(|A|T )
and hence, by the Weierstrass M -test, that the series is uniformly convergent
on [0, T ]. See Exercise 2-4 for the remaining points in the proof.

Recall that the Cayley-Hamilton Theorem 2.3.7 implies that An may be
written as a linear combination of the set of matrices {I, A,A2, · · · , An−1}.
Iterating on this idea, using the expression for eAt as a power series in A,
demonstrates the following theorem. Recall the vectors {v(j)}nj=1 denoting
the generalized eigenvectors of A. By Theorem 2.3.8 these vectors form a
basis for Rn and, without loss of generality, we assume that the normaliza-
tion |v(j)| = 1 is chosen. Furthermore, corresponding to every generalized
eigenvector is an eigenvalue λi (counting multiplicities) and Remark 2.3.9
tells us that there is an integer `i ≤ n such that

(A− λiI)rv(i) 6= 0, r < `i

(A− λiI)rv(i) = 0, r = `i.

Note that, in constrast to Theorem 2.3.8, in the following theorem the eigen-
values λi are enumerated according to their multiplicities.
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Theorem 2.5.4. Let A ∈ Rn×n. Then, for any x0 ∈ Rn, there is α =
(α1, · · · , αn)T ∈ Rn and ` = (`1, · · · , `n)T ∈ {1, · · · , n}n such that

eAtx0 =

n∑
i=1

αi e
Atv(i) =

n∑
i=1

αi

(`i−1∑
j=0

(A− λiI)j
tj

j!

)
eλitv(i). (2.11)

Proof. For v(i) a generalized eigenvector of A we have a corresponding eigen-
value λ = λi and integer ` = `i as defined preceding the theorem statement.
Furthermore, for v = v(i) and λ = λi,

eAtv = e(A−λI)teλtv

=
(
I + (A− λI)t+ · · ·+ (A− λI)`−1

t`−1

(`− 1)!

)
eλtv

=
`−1∑
j=0

(A− λI)j
tj

j!
eλtv.

Now let {v(i)}ni=1 denote the generalized eigenvectors of A, and note that
this set spans Rn. By Theorem 2.3.8, for any x0 ∈ Rn we may write

x0 =

n∑
i=1

αiv
(i) = V α

where α = (α1, · · · , αn)T . Thus (2.11) follows.

In the following corollary we enumerate the eigenvalues according to multi-
plicities and use the notation introduced in Remark 2.3.9.

Corollary 2.5.5. Let A ∈ Rn×n and define

λ := max{Reλ : λ is an eigenvalue of A}.

Then:

(i) if λ < 0 then there is constant C > 0 such that

|eAt| ≤ C exp
(1

2
λt
)
;
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(ii) if λ ≤ 0 and the integer `i = 1 for every generalized eigenvector asso-
ciated with an eigenvalue with zero real part, then there is constant C > 0
such that

|eAt| ≤ C;

(iii) if λ > 0 then there is constant C > 0 such that

|eAt| ≤ C exp
(
2λt
)
.

Proof. In this proof we use the same notation as above, with mi denoting
the multiplicity of eigenvalue λi with corresponding generalized eigenvector
v(i).

(i) Recall that (2.11) gives

eAtx0 =

n∑
i=1

αi

(`i−1∑
j=0

(A− λiI)j
tj

j!

)
eλitv(i).

By the assumptions of the theorem there is constant K > 0 such that

max
1≤i≤n,0≤j≤n−1

∣∣∣eλit tj
j!

∣∣∣ ≤ Ke 1
2
λt.

Define
M = max

1≤i≤n,0≤j≤n−1
|(A− λiI)j |.

Then

|eAtx0| ≤ n2
(

max
1≤i≤n,0≤j≤n−1

|(A− λiI)j |
)(

max
1≤i≤n,0≤j≤n−1

eλit
tj

j!

)
‖α‖∞

≤ n2MKe
1
2
λt‖α‖∞.

Now note that, by Theorem 2.3.8, there is invertible V , made from the
columns {v(i)}ni=1, such that x0 = V α. Hence

‖α‖∞ ≤ |α| ≤ |V −1||x0|.

Combining this and the previous inequality gives

|eAtx0| ≤ cMKe
1
2
λt × |V −1||x0|

and the desired result follows.
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(ii) Without loss we assume that, for index 1 ≤ i ≤ r we have `i = 1, whilst
for index r + 1 ≤ i ≤ n we have generalized eigenvectors (`i > 1). The
representation (2.11) then gives

eAtx0 =
r∑
i=1

αie
λitvi +

n∑
i=r+1

αi

(`i−1∑
j=0

(A− λiI)j
tj

j!

)
eλitvi. (2.12)

For 1 ≤ i ≤ r we have Reλi ≤ 0 and so we have

|eλit| ≤ 1.

For r + 1 ≤ i ≤ n we have Reλi < 0 and hence there is C > 0 and λ < 0
such that

max
r+1≤i≤n,1≤j≤n

eλit
tj

j!
≤ Ce

1
2
λt;

Therefore

sup
t≥0
|eAtx0| ≤ sup

t≥0
‖α‖∞

(
r + n2CMe

1
2
λt
)

≤ ‖α‖∞
(
r + n2CM

)
with M as defined in the proof of (i). Note that

x0 =
n∑
i=1

αivi = V α

where, by Theorem 2.3.8, V ∈ Rn×n is invertible. Thus

‖α‖∞ ≤ |α| ≤ |V −1||x0|.

Hence we may choose δ so that, if |x0| < δ, then
(
r + n2CM

)
‖α‖∞ < ε and

the desired bound follows.

The proof of (iii) is similar to that of (i) and is omitted.

Consider equation (2.3) in the case where A is constant in time and a ∈
L2
(
(0, T );Rn

)
; notice that this choice of a is locally integrable so that The-

orem 2.5.2 shows the existence of a solution

x(t) = eAtx0 +

∫ t

0
eA(t−s)a(s)ds. (2.13)
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Define the operator A : H1
(
(0, T );Rn

)
→ L2

(
(0, T );Rn

)
× Rn by

A(x) =

(
dx
dt −Ax
x(0)

)
. (2.14)

We may show the following:

Theorem 2.5.6. The operator A has bounded inverse A−1 : L2
(
(0, T );Rn

)
×

Rn → H1
(
(0, T );Rn

)
.

Proof. Consider the equation Ax(t) = (a, x0)
T . Using (2.13) and the fact

that
dx

dt
= Ax+ a, x(0) = x0,

we have the existence of a constant C, independent of (a, x0)
T , such that

|x(t)| ≤ C
(
|x0|+

∫ t

0
|a(s)|ds

)
∣∣∣dx
dt

(t)
∣∣∣ ≤ |A||x(t)|+ |a(t)|.

Since a ∈ L2 it follows that

sup
0≤t≤T

|x(t)| ≤ C
(
|x0|+

√
T‖a‖L2

)
and hence that∣∣∣dx

dt
(t)
∣∣∣2 ≤ 2‖A‖2C2

(
|x0|+

√
T‖a‖L2

)2
+ 2|a(t)|2.

Integrating these two estimates shows that there is constant K, independent
of (a, x0)

T , such that

‖x‖2H1 =

∫ T

0

(
|x(t)|2 +

∣∣∣dx
dt

(t)
∣∣∣2)dt ≤ K(|x0|+ ‖a‖L2

)2
as required.

33



2.6 Nonlinear ODEs

We briefly review existence, uniqueness and continuity of solutions for the
nonautnonomous ODE

ẋ = g(x, t) (2.15a)

x(0) = x0 (2.15b)

with x ∈ Rn, g : Rn × R+ → Rn.

Theorem 2.6.1. Assume that, for each x ∈ Rn, the function g(x, ·) :
[0, T ] → Rn is measurable. If, for an integrable non-negative function c :
[0, T ]→ [0,∞), we have, for all x, y ∈ Rn and t ∈ [0, T ],

|g(x, t)| ≤ c(t)
(
1 + |x|

)
,

|g(x, t)− g(y, t)| ≤ c(t)|x− y|,

then, for all x0 ∈ Rn, equation (2.15) has exactly one solution x(·) = ϕ(·, x0)
on [0, T ].

Theorem 2.6.2. Consider equation (2.15) and assume that:

• the conditions of Theorem 2.6.1 hold;

• Dxg(·, t) is continuous;

• g(·, ·) and Dxg(·, ·) are bounded on bounded subsets of [0, T ]× Rn.

Then the mapping ξ ∈ Rn 7→ ϕ(·, ξ) ∈ C([0, T ];Rn) is differentiable at any
ξ ∈ Rn. The function t 7→ X(t) := Dξϕ(t, x0) is absolutely continuous and
satisfies

Ẋ = Dxg
(
ϕ(t, x0), t

)
X

X(0) = I.

Corollary 2.6.3. Consider equation (2.15) in the case where g depends
on a parameter γ ∈ R` so that g = g(x, γ, t) with (x, γ) ∈ Rn × R` and
t ∈ [0, T ]. Assume that g satisfies the assumptions of Theorem 2.6.2 with
x ∈ Rn replaced by (x, γ) ∈ Rn × R` and denote the solution of (2.15) by
ϕ(t, γ, ξ). Then for arbitrary t ∈ [0, T ], γ0 ∈ R` and x0 ∈ Rn the mapping
γ ∈ R` 7→ ϕ(·, γ, ξ) is differentiable at γ0 and G(t) := Dγϕ(t, γ0, x0) satisfies

Ġ = Dxg
(
ϕ(t, γ0, x0), t

)
G+Dγg

(
ϕ(t, γ0, x0), t

)
G(0) = 0.
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Proof. We write equation (2.15) as

ẋ = g(x, γ, t)

γ̇ = 0

x(0) = x0

γ(0) = γ.

Define

z =

(
x
γ

)
, z0 =

(
x0
γ

)
, h(z, t) =

(
g(x, γ, t)

0

)
.

Then we have

ż = g(z, t)

z(0) = z0.

Applying Theorem 2.6.2 to this system gives the desired result.

2.7 Stability of ODEs

Consider the nonautonomous equation (2.15) and assume that g(0, t) ≡ 0
for all t ≥ 0 and that g : Rn ×R+ → Rn satisfies the conditions of Theorem
2.6.2.

Definition 2.7.1. Consider the system (2.15). The origin is stable if the
solution ϕ(t, x0) satisfies the following: for any ε > 0 ∃ δ > 0 such that

|x0| < δ =⇒ sup
t≥0
|x(t)| < ε.

The origin is asymptotically stable if it is stable and ∃r > 0 such that

|x0| < r =⇒ lim
t→∞
|x(t)| = 0.

The origin is globally asymptotically stable if, for all x0 ∈ Rn,

lim
t→∞
|x(t)| = 0.

The origin is exponentially stable if it is stable and ∃M,ω, r > 0 such that

|x0| < r =⇒ |x(t)| ≤Me−ωt|x0| ∀t ≥ 0.

Remarks 2.7.2. Although these definitions are stated regarding (asymp-
totic) stability of the origin, they are easily translated to the definitions re-
garding the stability of any point x for which g(x, t) ≡ 0 so that ϕ(t, x) = x
for all t ≥ 0.
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2.7.1 Linear Systems

Consider now the linear system

ẋ = Ax, t > 0 (2.16a)

x(0) = x0. (2.16b)

Theorem 2.7.3. Consider the system (2.16) The origin is asymptotically
stable if and only if, for all eigenvalues λ of A, Reλ < 0.

Proof. Only If. Suppose that for an eigenvalue λ of A we have Reλ ≥ 0
and let z be the corresponding eigenvector. Note that Az = λz implies that
eAtz = eλtz. Let z = x + iy and λ = α + iω with x, y ∈ Rn and α, ω ∈ R.
Suppose first that x 6= 0. Since z is the eigenvector corresponding to λ,
z̄ = x− iy is the eigenvector corresponding to1 λ̄ = α− iω and we can write

2eAtx = eAt(z + z̄) = eαt(eiωtz + e−iωtz̄)

= 2eαt
(
x cosωt− y sinωt

)
which does not converge to zero as t → ∞ if α ≥ 0. If x = 0, then instead
we consider

−2eAty = ieAt(z − z̄)
= −eαt

(
y exp(iωt) + y exp(−iωt)

)
and again this does not converge to zero as t→∞ if α ≥ 0.

If This follows directly from Corollary 2.5.5(i).

Remarks 2.7.4. The proof reveals that, for the linear system (2.16), if all
eigenvalues have negative real parts then the origin is in fact exponentially
stable.

Recall Theorem 2.3.8 and recall that `i is the number of generalized eigen-
vectors corresponding to eigenvalue λi of A. If `i = 1 we simply have an
eigenvector and no other generalized eigenvectors.

Theorem 2.7.5. Consider the system (2.16). The origin is stable if, for all
eigenvalues λi of A, Reλi ≤ 0 and, any eigenvalue with Reλi = 0 has no
generalized eigenvectors associated with it, apart from the eigenvector itself:
`i = 1. Conversely, if the origin is stable then Reλi ≤ 0 for all i.

1complex conjugate λ̄ not to be confused with λ defined in Corollary 2.5.5.
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Proof. The first part of the theorem is a consequence of Corollary 2.5.5(ii).
For the second part, assume that there is i such that Reλi > 0 and that
the corresponding eigenvector is v(i). For simplicity we assume that both
the eigenvalue and eigenvector are real. Then with x(0) = v(i) we have
eAtx(0) = eλitx(0)→∞ as t→∞ proving instability. (The case of complex
eigenvalue is similar).

Example 2.7.6. Consider the matrix

A =

(
0 1
0 0

)
.

This has a single eigenvalue of zero, with eigenvector (1, 0) and generalized
eigenvector (0, 1). Neither of the preceding two theorems apply and indeed
the system (2.16) is unstable. To see this note that ẍ1 = 0 so that x1(t)
grows linearly with t.

2.7.2 Lyapunov Functions

In this section we consider the autonomous system

ẋ = g(x) (2.17a)

x(0) = x0 (2.17b)

with x ∈ Rn, g : Rn → Rn.

Definition 2.7.7. Let G ⊂ Rn be a neighbourhood of 0 and V : G → R a
continuously differentiable function. Then V is a Lyapunov function if:

• V (x) > 0 for any x ∈ G\{0} and V (0) = 0;

• V̇ (x) := 〈DV (x), g(x)〉 ≤ 0 ∀x ∈ G.

If, in addition,

V̇ (x) = 〈DV (x), g(x)〉 < 0 ∀x ∈ G\{0},

then V is a strict Lyapunov function.
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Notice that V̇
(
x(t)

)
= d

dt

(
V (x(t)

)
so that a (strict) Lyapunov function is a

non-negative function which is zero only at the origin and is non-increasing
(descreasing) along trajectories. Intuitively this links it to stability and the
remainder of this section substantiates this intuition.

Lemma 2.7.8. Let B(0;R) be a ball of radius R centred at the origin in Rn.
Assume that the function W : B(0;R) → R is continuous with W (0) = 0
and W (x) > 0 for any x ∈ B(0;R)\{0}. Then there are increasing functions
α : R → R, β : R → R with α(0) = β(0) = 0 and α(r) > 0, β(r) > 0 for
r > 0 such that

α(‖x‖) ≤W (x) ≤ β(‖x‖).

Proof. For any x ∈ B(0;R) with ‖x‖ = r ≤ R we have

min
r≤‖y‖≤R

W (y) ≤W (x) ≤ max
‖y‖≤r

W (y)

and both α(r) := minr≤‖y‖≤RW (y) and β(r) = max‖y‖≤rW (y) are increas-
ing functions of r. Thus the lemma is proved.

Theorem 2.7.9. Consider the ODE (2.17). Then:

• (i) the origin is stable if a Lyapunov function exists on a neighbourhood
G of the origin;

• (ii) the origin is asymptotically stable if a strict Lyapunov function
exists on a neighbourhood G of the origin.

Proof. (i) We first observe that

d

dt

(
V
(
x(t)

))
= 〈DV

(
x(t)

)
,
dx

dt
(t)〉 = 〈DV

(
x(t)

)
, g(x(t)

)
≤ 0

so that V is nonincreasing along trajectories. Now choose R to ensure
B(0;R) ⊂ G and α(·), β(·) as in Lemma 2.7.8 so that

α(‖x‖) ≤ V (x) ≤ β(‖x‖) ∀x ∈ B(0;R).

For arbitrary ε ∈ (0, R) choose δ such that β(δ) < α(ε). Let ‖x0‖ < δ. Then
we have, using the fact that V is nonincreasing along trajectories to obtain

38



the second inequality,

α
(
‖ϕ(t, x0)‖

)
≤ V

(
ϕ(t, x0)

)
≤ V (x0)

≤ β
(
‖x0‖

)
≤ β(δ)

≤ α(ε).

Thus α
(
‖ϕ(t, x0)‖

)
< α(ε) and since α is increasing this implies that ‖ϕ(t, x0)‖ <

ε.

(ii) By assumption −V̇ (x) > 0 for any x ∈ G\{0}. Applying the result of
Lemma 2.7.8 to the positive function −V̇ on B(0;R)\{0} we have that there
exists γ increasing and such that

−V̇ (x) ≥ γ
(
‖x‖
)
∀x ∈ B(0;R). (2.18)

Choose δ as in part (i) so that ‖ϕ(t, x0)‖ < ε. To show asymptotic stability we
need to show that, for any ε̂ ∈ (0, ε), ∃τ = τ(ε̂) > 0 such that ‖ϕ(t, x0)‖ < ε̂
for any t ≥ τ. Choose δ̂ so that β(δ̂) < α(ε̂). We need to show the existence
of t̂ ≥ 0 such that ϕ(t̂, x0) ∈ B(0; δ̂) because then an argument similar to
that used in (i) shows that ϕ(t, x0) ∈ B(0; ε̂) for all t > t̂. Suppose, for
contradiction, that such a t̂ does not exist, so that ‖ϕ(t, x0)‖ > δ̂ for all
t ≥ 0. By (2.18) we have

V
(
ϕ(τ, x0)

)
− V (x0) =

∫ τ

0
V̇ (s)ds

≤ −
∫ τ

0
γ
(
‖ϕ(s, x0)‖

)
ds.

Therefore

V
(
ϕ(τ, x0)

)
≤ V (x0)−

∫ τ

0
γ
(
‖ϕ(s, x0)‖

)
ds

≤ β
(
‖x0‖

)
−
∫ τ

0
γ(δ̂)ds

≤ β(δ)− τγ(δ̂).

Now choose τ so that τγ(δ̂) > β(δ) and, since V ≥ 0, the desired contradic-
tion follows.
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Definition 2.7.10. The domain of attraction of the equilibrium point 0 of
(2.17) is

A = {x ∈ Rn : ϕ(t, x)→ 0 as t→∞}.

Corollary 2.7.11. Let V be a strict Lyapunov function on domain B(0;R) ⊂
Rn, for (2.17). Define Gρ = {x ∈ B(0;R) : V (x) < ρ}, for ρ < ∞, and
suppose that Gρ is compact and that Gρ ⊂ IntB(0;R). Then Gρ ⊂ A.

Proof. Let x0 ∈ Gρ. We have

α
(
‖ϕ(t, x0)‖

)
≤ V

(
ϕ(t, x0)

)
≤ V (x0) < ρ.

Choose r < R so that α(r) = ρ noting that then ϕ(t, x0) ∈ B(0;R) for any
t ≥ 0. With γ defined as in the proof of Theorem 2.7.9. Then we have

V
(
ϕ(t, x0)

)
− V (x0) ≤ −

∫ t

0
V̇ (s)ds

= −
∫ t

0
γ(ϕ(s, x0)

)
ds.

To show asymptotic stability we need to show that, for any δ > 0 there is
τ = τ(δ) > 0 such that ϕ(t, x0) ∈ B(0; δ). Again we suppose for contradiction
that such a τ does not exist. But

V
(
ϕ(t, x0)

)
≤ V (x0)−

∫ t

0
γ(δ)ds

< ρ− γ(δ)t.

Choosing t > ρ/γ(δ) gives a contradiction.

Remarks 2.7.12. To understand the compactness requirement in the pre-
ceding corollary, consider the case

V (x) =
x21

1 + x21
+ x22.

The region {x ∈ R2 : V (x) ≤ ρ} is compact for ρ < 1, but not for ρ > 1.
The figure shows that an initial state can diverge.

The preceding corollary implies the following:

40



Theorem 2.7.13. Suppose that a strict Lyapunov function exists for (2.17)
on Rn and that V (x)→∞ as |x| → ∞ (i.e. V is radially unbounded). Then
x = 0 is globally asymptotically stable.

Example 2.7.14. Consider the nonlinear model of a damped pendulum
(with no control) so that, for θ ∈ (−π/2, π/2),

θ̈ + θ̇ + sin(θ) = 0.

Writing x1 = θ and x2 = θ̇ we obtain the system

ẋ1 = x2

ẋ2 = − sinx1 − x2.

Consider V (x) =
(
1− cos(x1)

)
+ 1

2x
2
2. Then

V̇ (x) = ẋ1 sin(x1) + ẋ2x2

= x2 sin(x1) + x2
(
− sin(x1)− x2

)
= −x22
≤ 0.

Thus the origin is stable, by Theorem 2.7.9(i). The damping term −x22
suggests asymptotic stability, but does not prove it.

Example 2.7.15. Consider the equation

ẋ = −x(1− x)

and set V (x) = 1
2x

2. Then

V̇ (x) = xẋ = −x2(1− x)

and we see that V̇ (x) < 0 for |x| ∈ (0, 1). Taking G = (−1, 1) we deduce,
using Theorem 2.7.9(ii), that the origin is asymptotically stable and taking
G 1

2
= {x ∈ G : V (x) < 1

2} we deduce from Corollary 2.7.11 that (−1, 1) ⊂ A.

Remarks 2.7.16. By techniques similar to those in the proof of Theorem
2.7.9 we can show the following (see Exercise 2-12). Let V : G → R be
a continuously differentiable function with V (x) > 0 for x ∈ G\{0} and
V (0) = 0. If V̇ (x) > 0 for any x ∈ G\{0} then x = 0 is unstable.
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2.7.3 Lyapunov Function for Linear Systems

We now consider the linear version of (2.17), obtaining the equation

ẋ = Ax (2.19a)

x(0) = x0 (2.19b)

with x ∈ Rn, A ∈ Rn×n.

In order to try and identify a Lyapunov function, set

V (x) = 〈x, Px〉 (2.20)

with P ∈ Rn×n being symmetric positive definite. Then V (x) > 0 for
x ∈ Rn\{0} and

〈DV (x), Ax〉 = 〈Ax, Px〉+ 〈x, PAx〉
= 〈x, (ATP + PA)x〉.

(Note that we can also write this as

〈DV (x), Ax〉 = 2〈x, PAx〉

but that the matrix PA is not then symmetric.) If we define

Q = ATP + PA (2.21)

then, to use Lyapunov stability theory, we would like to know when there
is positive-definite symmetric P satisfying this equation, for some negative
definite matrix Q.

Theorem 2.7.17. Let Q ∈ Rn×n be a negative definite matrix. Then there
exists positive definite P ∈ Rn×n solving the Lyapunov equation (2.21) if
and only if the origin is asymptotically stable for (2.19).

Proof. Fix negative-definite Q and, to prove the “only if” part assume that
there is a positive-definite solution P ∈ Rn×n of (2.21). Then V (x) given by
(2.20) is a strict Lyapunov function for (2.19) and, by Theorem 2.7.9, x = 0
is asymptotically stable.
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Now fix negative-definite Q and assume that x = 0 is asymptotically stable,
so that all eigenvalues of A have negative real part, by Theorem 2.7.3. Define

P = −
∫ ∞
0

eA
T tQeAtdt. (2.22)

The matrix P is well-defined by this expression because, by Corollary 2.5.5,
noting that AT has the same eigenvalues as A,

|eAT tQeAt| ≤ c|Q| exp(λt) (2.23)

where, recall, λ := max{Reλ : λ is an eigenvalue of A} < 0. Note that P is
positive-definite since eAt is invertible and −Q is positive-definite so that,
for some α > 0

〈v, Pv〉 = −
∫ ∞
0
〈v, eAT tQeAtv〉dt

= −
∫ ∞
0
〈eAtv,QeAtv〉dt

≥ α
∫ ∞
0
|eAtv|2dt

> 0.

Furthermore, we have, using (2.23) in the last line,

ATP + PA = −
∫ ∞
0

(
AT etA

T
QetA + etA

T
QetAA

)
dt

= −
∫ ∞
0

d

dt

(
etA

T
QetA

)
dt

= Q− lim
t→∞

etA
T
QetA

= Q.

Corollary 2.7.18. For any Q ∈ Rn×n there is a unique solution P of equa-
tion (2.21) if all eigenvalues of A have negative real part.

Proof. See Exercise 2-8. Note Q is not required to be negative-definite, hence
P will not be positive definite in general.
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Example 2.7.19. Consider the linear system

ξ̈ + ξ̇ + ξ = 0.

Let x1 = ξ and x2 = ξ̇. We have

ẋ1 = x2

ẋ2 = −x1 − x2.

which is in the form of (2.19) with

A =

(
0 1
−1 −1

)
.

Let Q = −I. Then the Lyapunov equation (2.21) becomes(
p1 p2
p2 p3

)(
0 1
−1 −1

)
+

(
0 −1
1 −1

)(
p1 p2
p2 p3

)
= −

(
1 0
0 1

)
.

Multiplying the matrices gives(
−p2 p1 − p2
−p3 p2 − p3

)
+

(
−p2 −p3

p1 − p2 p2 − p3

)
= −

(
1 0
0 1

)
.

From the symmetry this gives the three independent equations

2p2 = 1

p1 − p2 − p3 = 0

2p2 − 2p3 = −1

with solution p1 = 3/2, p2 = 1
2 , p3 = 1.

Thus we deduce that

V (x) =
3

2
x21 + x1x2 + x22

is a Lyapunov function. To see that it is positive away from the origin note
that

V (x) =
5

4
x21 +

(1

2
x1 + x2

)2
showing that V (x) > 0 for x 6= 0. Note also that

V̇ (x) = 3x1ẋ1 + x1ẋ2 + ẋ1x2 + 2x2ẋ2

= 3x1x2 − x1
(
x1 + x2

)
+ x22 − 2x2

(
x1 + x2

)
= −x21 − x22

so that V
(
x(t)

)
is deccreasing along trajectories, away from the origin. Of

course the fact that V̇ (x) = −|x|2 is a consequence of our choice Q = −I.
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2.7.4 Linearization

Consider the nonlinear system (2.17) and assume that g(x) = 0.

Theorem 2.7.20. Assume that g is differentiable at x. Then the system
(2.17) is asymptotically stable at x = x if all eigenvalues of the matrix A =
Dg(x) have strictly negative real parts.

Proof. Without loss of generality we may take x = 0 (by shifting the origin).
Define h(x) = g(x)−Ax, noting that h : Rn → Rn. By differentiability of g
at 0 we have

lim
‖x‖→0

‖h(x)‖
‖x‖

= 0. (2.24)

Since the linear system (2.19) with A = Dg(0) is asymptotically stable there
exists a positive-definite matrix P > 0 such that

PA+ATP = −I. (2.25)

Define V (x) = 〈x, Px〉. Then

V̇ (x) = 〈g(x), Px〉+ 〈x, Pg(x)〉
= 〈Ax+ h(x), Px〉+ 〈x, P

(
Ax+ h(x)

)
〉

= 〈x,
(
ATP + PA

)
x〉+ 2〈x, Ph(x)〉.

Thus, by (2.25),

V̇ (x) ≤ −‖x‖2 + 2‖x‖‖P‖‖h(x)‖.

By (2.24) we deduce that, for any ε > 0 there is δ > 0 such that ‖x‖ < δ
implies ‖h(x)‖ < ε‖x‖. In the set G = {‖x‖ < δ} we have

V̇ (x) < −‖x‖2 + 2ε‖P‖‖x‖2

= −
(
1− 2ε‖P‖

)
‖x‖2

so that by choosing ε < (2‖P‖)−1 we get V̇ (x) < 0 and the result follows by
Theorem 2.7.9.

Remarks 2.7.21. If (2.17) is exponentially stable at 0 then all eigenvlaues
of A = Dg(0) have negative real part. This may be shown by substituting
y(t) = e−ηtx(t) for η ∈ (0, ω) in (2.17).
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Example 2.7.22. Consider the nolinear system

ξ̈ + ξ̇ − ξ + ξ2 = 0.

Let x1 = ξ and x2 = ξ̇. We then have

ẋ1 = x2

ẋ2 = x1 − x2 − x21.

This is in the form of (2.17) with

g(x) =

(
x2

x1 − x2 − x21

)
.

There are two equilibrium points: x = (0, 0) and x = (1, 0). The derivative
of g is

Dg(x) =

(
0 1

1− 2x1 −1

)
.

At the equilibrium point x = (0, 0) we have

Dg(x) =

(
0 1
1 −1

)
with eigenvalues λ± = 1

2

(
−1±

√
5
)

and Theorem 2.7.20 does not apply. On
the other hand, at the equilibrium point x = (1, 0) we have

Dg(x) =

(
0 1
−1 −1

)
with eigenvalues λ± = 1

2

(
−1 ± i

√
5
)

and Theorem 2.7.20 gives asymptotic
stability.

2.8 Probability

In this section we use lowercase letters to denote both the random variable
and the argument of the probability density functions (pdfs) for the ran-
dom variable. The same letter with a † superscript represents a particular
realization of the relevant random variable.
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Throughout we consider random variables x on Rn and we assume that there
is a probability density function (pdf) ρx : Rn → R+ such that, for any Borel
set1 A ⊆ Rn,

P(x ∈ A) =

∫
A
ρx(x)dx.

In words this formula expresses the probability that the random variable x
lies in the set A. The pdf enables us to calculate this probability for arbitrary
sets A. Necessarily we have ∫

Rn

ρx(x)dx = 1,

stating that, with probability one, x lies somewhere in Rn.

For any function f : Rn → Rr we define the expectation of f to be

E
(
f(x)

)
=

∫
Rn

f(x)ρx(x)dx.

Two important special cases of this are as follows. We define the mean
x ∈ Rn by

x = Ex =

∫
Rn

xρx(x)dx

and the covariance Cx ∈ Rn×n by

Cx = E(x− x)(x− x)T =

∫
Rn

(x− x)(x− x)Tρx(x)dx.

Particularly important for us are the following random variables:

Definition 2.8.1. Let m ∈ Rn and let C ∈ Rn×n be a symmetric positive-
definite matrix. Then x ∈ Rn is a Gaussian random variable with mean m
and covariance matrix C if

ρx(x) =
1√

(2π)ndetC
exp
(
−1

2
〈(x−m), C−1(x−m)〉

)
.

We write x ∼ N(m,C).

Remarks 2.8.2. • The matrix L = C−1 is known as the precision ma-
trix and is well-defined under our assumptions. However it is useful
to allow for the case where C is not invertible.

1A set which can be formed through countable union, countable intersection and com-
plementation of open sets.
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• The degenerate case where C = 0 is known as a Dirac mass and corre-
sponds to a random variable which takes the value m with probability
one.

• The definition of Gaussian can be extended to positive semi-definite C
by means of the characteristic function. Heuristically the measure in
this case may be viewed as an independent product of Diracs and Gaus-
sians with invertible covariance, in an appropriate coordinate system.

• A random variable on Rn is Gaussian if and only if the pdf may be
written as

ρx(x) ∝ exp
(
−J(x;m,C)

)
where

J(x;m,C) =
1

2

∣∣C− 1
2 (x−m)

∣∣2
for some vector m ∈ Rn and positive-definite matrix C ∈ Rn×n. Fur-
thermore, the mean is then the minimizer over x of J(x;m,C).

We now consider a joint random variable (x, y) ∈ Rn × Rm with pdf ρx,y :
Rn × Rm → R+. We define the marginal of x to be the random variable on
Rn with pdf

ρx(x) =

∫
Rm

ρx,y(x, y)dy.

Similarly we may define the marginal of y with pdf ρy given by

ρy(y) =

∫
Rn

ρx,y(x, y)dx.

Of particular significance for us is the conditional random variable x given
a single realization of the random variable y; we denote this realization by
y†. This conditional random variable is a random variable on Rn with pdf
ρx|y : Rn → R+ given by

ρx|y(x; y†) =
ρx,y(x, y

†)

ρy(y†)
.

We denote this random variable by x|y = y†. Where it causes no confusion
to do so we simply write x|y as the relevant random variable and denote its
density by ρx|y(x; y). We then have

ρx|y(x; y) =
ρx,y(x, y)

ρy(y)
. (2.26)
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Similarly we may define the conditional random variable y given x = x† with
pdf ρy|x : Rm → R+ given by

ρy|x(y;x†) =
ρx,y(x

†, y)

ρx(x†)
; (2.27)

we denote this random variable by y|x = x†. Again, where it causes no
confusion, we simply write the random variable as y|x and denote its density
by ρy|x(y;x). Then we have

ρy|x(y;x) =
ρx,y(x, y)

ρx(x)
. (2.28)

From these definitions it is easy to deduce:

Theorem 2.8.3. Bayes’ Theorem Assume that for y ∈ Rm the marginal
density is non-zero: ρy(y) 6= 0. The pdf of the conditional random variable
x|y may be computed from the conditional random variable y|x by means of
the formula

ρx|y(x; y) =
ρy|x(y;x)ρx(x)

ρy(y)
.

Proof. This follows directly from the fact that

ρx,y(x, y) = ρy|x(y;x)ρx(x)

and

ρx,y(x, y) = ρx|y(x; y)ρy(y).

Remarks 2.8.4. We sometimes write Bayes’ Theorem succinctly as

P(x|y) ∝ P(y|x)P(x).

Also we will use this theorem when everything is conditioned on a third ran-
dom variable z and it is then written succinctly as

P(x|y, z) ∝ P(y|x, z)P(x|z).
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Example 2.8.5. Bayes’ Theorem is particularly useful for us when consid-
ering Gaussian distributions. In particular we will encounter the situation
where a joint random variable (x, y) ∈ Rn×Rm is specified as follows: we as-
sume that the marginal distribution of x is a Gaussian N(m0, C0); and that
the conditional distribution of y|x is a Gaussian N(Hx,Γ). For simplicity
we will assume that C0 and Γ are positive-definite in this scenario.

Theorem 2.8.6. Consider the joint random variable (x, y) as specified in
Example 2.8.5, with C0 and Γ positive-definite. Then:

• (i) the joint random variable (x, y) is itself Gaussian with positive-
definite covariance Σ and mean a given by the formulae

Σ−1a = r, r =

(
C−10 m0

0

)
, Σ−1 =

(
C−10 +HTΓ−1H −HTΓ−1

−Γ−1H Γ−1

)
;

• (ii) the conditional random variable x|y is also Gaussian and has
positive-definite covariance C ′ and mean m′ given by the formulae

(C ′)−1 = C−10 +HTΓ−1H

and
(C ′)−1m′ = C−10 m0 +HTΓ−1y.

Proof. Rearranging (2.28) we deduce that

ρx,y(x, y) = ρy|x(y;x)ρx(x).

Thus we see that
ρx,y(x, y) ∝ exp

(
−J(x, y)

)
(2.29)

where

J(x, y) =
1

2
|Γ−

1
2 (y −Hx)|2 +

1

2
|C−

1
2

0 (x−m0)|2.

We aim to write that as a quadratic form in z = (xT , yT )T in order to identify
the relevant mean and covariance. Expanding the quadratic forms gives

J(x, y) =
1

2
〈x, (C−10 +HTΓ−1H)x〉+

1

2
〈y,Γ−1y〉 − 1

2
〈x,HTΓ−1y〉 − 1

2
〈y,Γ−1Hx〉

− 〈x,C−10 m0〉+
1

2
〈m0, C

−1
0 m0〉

=
1

2
〈z,Σ−1z〉 − 〈x,C−10 m0〉+

1

2
〈m0, C

−1
0 m0〉

=
1

2
〈(z − a),Σ−1(z − a)〉+

1

2
〈m0, C

−1
0 m0〉 −

1

2
〈a,Σ−1a〉.
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Here r,Σ are as defined in the theorem statement. It can be shown (see
Exercise 2-14) that Σ−1 is positive-definite and symmetric since Γ and C0

are positive-definite and symmetric. Hence the preceding equation for a is
well-defined. Furthermore, we deduce that

ρx,y(x, y) ∝ exp
(
−1

2

〈
(z − a),Σ−1(z − a)

〉)
,

with constant of proportionality independent of both x and y, from which it
follows that (x, y) is Gaussian N(a,Σ).

A similar approach shows that x|y is also Gaussian. From (2.29) and (2.26)
we deduce that the required density for ρx|y(x, y) is also proportional to
exp
(
−J(x, y)

)
, with constant of proportionality depending on y, but not on

x. Thus we now want to write J(x, y) as a quadratic form in x alone in order
to determine the relevant Gaussian distribution. For this we note that

J(x, y) =
1

2
〈x, (C−10 +HTΓ−1H)x〉 − 〈x,HTΓ−1y + C−10 m0〉

+
1

2
〈y,Γ−1y〉+

1

2
〈m0, C

−1
0 m0〉

=
1

2
〈x, (C ′)−1x〉 − 〈x,HTΓ−1y + C−10 m0〉+

1

2
〈m0, C

−1
0 m0〉+

1

2
〈y,Γ−1y〉

=
1

2
〈(x−m′), (C ′)−1(x−m′)〉+

1

2
〈m0, C

−1
0 m0〉+

1

2
〈y,Γ−1y〉 − 1

2
〈m′, (C ′)−1m′〉

where C ′ and m′ are as defined in the theorem statement. It may be shown
(Exercise 2-14) that C ′ is positive-definite and symmetric since Γ and C0 are
positive-definite and symmetric, and hence that C ′ and m′ are well-defined.
By means of Theorem 2.8.3 we deduce that

ρx|y(x; y) ∝ exp
(
−1

2
〈(x−m′), (C ′)−1(x−m′)〉

)
,

with constant of proportionality independent of x, from which it follows that
x|y is Gaussian N(m′, C ′).

Theorem 2.8.7. If (x, y) ∈ Rn × Rm is Gaussian then the marginal dis-
tribution of x is also Gaussian. Furthermore, if the joint random variable
(x, y) has precision matrix L with the block form

L =

(
Lxx Lxy
Lyx Lyy

)
then the matrices Lxx ∈ Rn×n and Lyy ∈ Rm×m are both symmetric and
positive-definite, and Lyx = LTxy ∈ Rm×n. Furthermore, the mean of the
marginal distribution is Ex and the precision matrix is Lxx − LxyL−1yy Lyx.
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Proof. The fact that the matrices Lxx, Lyy are both symmetric and positive-
definite is the subject of Exercise 2-15. Lyx = LTxy since L symmetric.

We first consider the case where (x, y) has mean zero. Thus the pdf has the
form, for C = L−1,

ρx,y(x, y) =
1√

(2π)n+mdetC
exp
(
−J(x, y)

)
where, for Lyyh = Lyxx we have

J(x, y) =
1

2
〈x, Lxxx〉+ 〈Lyxx, y〉+

1

2
〈y, Lyyy〉

=
1

2
〈x, Lxxx〉+

1

2
〈(y + h), Lyy(y + h)〉 − 1

2
〈h, Lyyh〉.

From this we see that∫
Rm

ρx,y(x, y)dy =

∫
Rm

1√
(2π)n+mdetC

exp
(
−J(x, y)

)
dy

=

√
(2π)mdetL−1yy
(2π)n+mdetC

exp
(
−1

2
〈x, Lxxx〉+

1

2
〈h, Lyyh〉

)
I

where

I =

∫
Rm

1√
(2π)mdetL−1yy

exp
(
−1

2
〈(y + h), Lyy(y + h)〉

)
dy

= 1.

From this it follows that the marginal distribution of x is a mean zero Gaus-
sian with precision operator Lxx − LxyL−1yy Lyx.

If (x, y) has mean (a, b) then a similar calculation shows that∫
Rm

ρx,y(x, y)dy =

√
(2π)mdetL−1yy
(2π)n+mdetC

exp
(
−1

2
〈x′, Lxxx′〉+

1

2
〈h′, Lyyh′〉

)
where x′ = x − a and Lyyh

′ = Lyx(x − a). From this it follows that the
marginal distribution of x is a Gaussian with mean a and precision operator
Lxx − LxyL−1yy Lyx.

Remarks 2.8.8. We prove Theorem 2.8.7 in the case of positive-definite
covariance. However it extends to the positive semi-definite case.
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Theorem 2.8.9. Let z ∈ Rp be a Gaussian random variable with mean
mz ∈ Rp and covariance Cz ∈ Rp×p. Let w = a + Az for some a ∈ Rq
and A ∈ Rq×p. Then w ∈ Rq is a Gaussian random variable with mean
mw = a+Amz and covariance Cw = ACzA

T .

Proof. The fact that an affine linear transformation preserves Gaussianity
may be checked directly by using change of variable formula for pdf’s. It is
then clear that, since expectation is a linear operation,

mw = Ew
= E(a+Az)

= a+AE(z)

= a+Amz.

Similarly

Cw = E
(
(w −mw)(w −mw)T

)
= E

(
A(z −mz)(z −mz)

TAT
)

= AE
(
(z −mz)(z −mz)

T
)
AT

= ACzA
T .

Two random variables x ∈ Rn and y ∈ Rm are said to be independent if the
pdf of the random variable z = (x, y) ∈ Rn+m factorizes as the product of
the two pdf’s of x and y:

ρx,y(x, y) = ρx(x)ρy(y). (2.30)

More generally a set of K independent random variables xk will have pdf
which factors as the product of the K densities for each xk.

A sequence of random variables {xi}i∈N is said to be independent, identically
distributed, i.i.d. for short, if xi and xj have the same probability distribution
for all i and j and are independent for i 6= j.

Two random variables x, y ∈ Rn are uncorrelated if E(xy) = E(x)E(y).

Theorem 2.8.10. Two Gaussian random variables x, y ∈ Rn are indepen-
dent if and only if they are uncorrelated.
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The following result concerning block matrix inversion, with application to
conditioned Gaussians, is very useful.

Lemma 2.8.11. Consider a positive-definite matrix C with the block form

C =

(
C11 C12

CT12 C22

)
.

Then C22 is positive-definite symmetric and the Schur complement S defined
by S = C11 − C12C

−1
22 C

T
12 is positive-definite symmetric. Furthermore

C−1 =

(
S−1 −S−1C12C

−1
22

−C−122 C
T
12S
−1 C−122 + C−122 C

T
12S
−1C12C

−1
22

)
.

Now let (x, y) be jointly Gaussian with distribution N(m,C) and m = (mT
1 ,m

T
2 )T .

Then the conditional distribution of x|y is Gaussian with mean m′ and co-
variance matrix C ′ given by

m′ = m1 + C12C
−1
22 (y −m2),

C ′ = C11 − C12C
−1
22 C

T
12.

Proof. To see that C22 is positive-definite let ξ = (0T , ξT2 )T and note that,
for ξ2 6= 0,

0 < 〈ξ, Cξ〉 = 〈ξ2, C22ξ2〉.

To see that S is positive-definite assume for contradiction that

〈ξ1, C11ξ1 − C12C
−1
22 C

T
12ξ1〉 ≤ 0

for some non-zero ξ1. Now let

ξ =
(
ξT1 , (−C−122 C

T
12ξ1)

T
)T
.

Then
〈ξ, Cξ〉 = 〈ξ1, C11ξ1 − C12C

−1
22 C

T
12ξ1〉 ≤ 0,

a contradiction. Thus C−1 as written is well-defined. Multiplication estab-
lishes that it is indeed the inverse of C.

Now we turn to the conditioning result. Define

C−1 := L =

(
L11 L12

LT12 L22

)
.
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We first prove the result for m = 0. Note that L11 is positive-definite
symmetric since L is, by a similar argument to that showing that C22 is
positive. The pdf for (x, y) is proportional to exp

(
−J(x, y)

)
where

J(x, y) =
1

2
〈x, L11x〉+ 〈x, L12y〉+

1

2
〈y, L22y〉,

=
1

2
〈(x+ L−111 L12y), L11(x+ L−111 L12y)〉

+
1

2
〈y, L22y〉 −

1

2
〈L12y, L

−1
11 L12y〉.

It follows that x|y has mean −L−111 L12y and covariance C ′ = L−111 . Shifting
x 7→ x − m1 and y 7→ y − m2 gives the desired result for the mean and
covariance expressed in terms of L. To express the covariance in terms of C
we use the first conclusion of the lemma to deduce that L11 = S−1so that

C ′ = L−111 = S = C11 − C12C
−1
22 C

T
12.

For the mean note that, also by the first part of the lemma,

L−111 L12 = −SS−1C12C
−1
22

as required.

We now apply this Lemma to Example 2.8.5.

Example 2.8.12. Consider the jointly Gaussian random variable (x, y)
constructed in Example 2.8.5, with C0 and Γ positive-definite. Thus x ∼
N(m0, C0) and y|x ∼ N(Hx,Γ). Theorem 2.8.6 shows that, provided C0 and
Γ are positive-definite, x|y is Gaussian with mean m′ and covariance C ′

given by

(C ′)−1 = C−10 +HTΓ−1H (2.31a)

(C ′)−1m′ = C−10 m0 +HTΓ−1y. (2.31b)

Here we will show that, provided Γ is invertible, the covariance and mean of
x|y are given by

C ′ = C0 − C0H
T (Γ +HC0H

T )−1HC0 (2.32a)

m′ = m0 + C0H
T (Γ +HC0H

T )−1(y −Hm0). (2.32b)
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The statement y|x ∼ N(Hx,Γ) means that y = Hx + ξ where ξ ∼ N(0,Γ)
is independent of x. To see this note that Γ +HC0H

T is invertible because,
for any v 6= 0,

〈v, (Γ +HC0H
T )v〉 ≥ 〈v,Γv〉 > 0.

The mean of (x, y) is (mT
0 , (Hm0)

T )T . The covariance of (x, y) is found as
follows:

E(x−m0)(x−m0)
T = C0,

E(x−m0)(y −Hm0)
T = E(x−m0)(Hx−Hm0)

T + E(x−m0)ξ
T

= E(x−m0)(x−m0)
THT

= C0H
T

E(y −Hm0)(y −Hm0)
T = E

(
y −Hx+H(x−m0)

)(
y −Hx+H(x−m0)

)T
= E

(
ξ +H(x−m0)

)(
ξ +H(x−m0)

)T
= EξξT + EH(x−m0)(x−m0)

THT

= EξξT +HC0H
T

= Γ +HC0H
T .

The desired result now follows from careful application of Lemma 2.8.11.

2.9 Calculus of Variations

Let U be a Hilbert space and let Uad ⊆ U denote a closed convex subset in
U. Define

J(u) =
β

2
‖u‖2. (2.33)

In all cases in this section the norm and inner-product will be in the natural
space where the variable(s) in question live and so we will not denote this
space explicitly in the inner-products and norm.

Theorem 2.9.1. Let β > 0 and assume that there exists u? ∈ Uad such that
J(u?) <∞. Then there exists unique u ∈ Uad such that J(u) ≤ J(u) for all
u ∈ Uad.

This theorem is a special case of a more general result which we now state
and prove. Let X,Y and Z be Hilbert spaces and A ∈ L(X,Z),B ∈ L(U,Z)
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and D ∈ L(X,Y). Let Xad ⊆ X denote a closed convex subset in X, choose
g ∈ Z and define

Fad =
{

(x, u) ∈ Xad × Uad|Ax+ Bu = g
}
.

Define, for fixed y ∈ Y,

J(x, u) =
α

2
‖y −Dx‖2 +

β

2
‖u‖2. (2.34)

Remarks 2.9.2. For Theorem 2.9.1 (resp. 2.9.3) the existence of a feasible
point u? (resp. (x?, u?)) follows automatically provided that Uad (resp. Fad)
is non-empty. However we formulate the statement and proofs in a slightly
more general way which is easily adapted to more complicated choices of
objective functional J .

Theorem 2.9.3. Let β > 0, α ≥ 0 and assume that there exists (x?, u?) ∈
Fad such that J(x?, u?) < ∞. If A has bounded inverse then there exists
unique (x, u) ∈ Fad such that J(x, u) ≤ J(x, u) for all (x, u) ∈ Fad.

Proof. Since J ≥ 0 and since there is a feasible point (x?, u?) ∈ Fad with
J(x?, u?) <∞ it follows that

J := inf
(x,u)∈Fad

J(x, u)

exists and is finite. Let {xk, uk} be a minimizing sequence in Fad so that

lim
k→∞

J(xk, uk) = J.

Now, for any δ > 0 we may choose the minimizing sequence so that

β

2
‖uk‖2 ≤ J(xk, uk) ≤ J + δ.

Thus {uk} is bounded in U and hence {xk} is bounded in X, because A
has bounded inverse. This implies, along a (relabelled) subsequence, the
existence of a weak limit in X× U:

{xk, uk}⇀ (x, u).

We now show that the limit (x, u) ∈ Fad. To this end we note that

{xk, uk} ∈M := Fad
⋂
BX×U(r)
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where BX×U(r) is the closed centred ball of radius r in X × U. Since M is
bounded, closed and convex it is weakly sequentially compact and we deduce
from Theorem 2.4.11 that (x, u) ∈M ⊂ Fad.

Finally observe that J is weakly lower semicontinuous because the square of
any Hilbert space norm has this property, and β > 0. Thus

J = lim
k→∞

J(xk, uk) ≥ J(x, u) ≥ J.

It follows that J(x, u) = J and hence that (x, u) ∈ Fad attains the infimum
of J in Fad. Finaly, since β > 0 we have that u 7→ J

(
A−1(g − Bu), u

)
is

strictly convex and hence there cannot exist more than one minimizer.

Characterizing the minimizer (x, u) may be achieved by working with La-
grange multipliers. If we define L : X× U× Z→ R by

L(x, u, p) = J(x, u) + 〈p,Ax+ Bu− g〉

then the constrained minimizer of J(x, u) over

Fad =
{

(x, u) ∈ X× U|Ax+ Bu = g
}

will be found by making L(x, u, p) stationary with respect to (x, u, p). We
now extend this to consider the case of minimizing J(x, u) over

Fad =
{

(x, u) ∈ Xad × U|Ax+ Bu = g
}

where Xad comprises a finite set of linear constraints. Let f ∈ Rr and define

Xad = {x ∈ X|`(x) = f} (2.35)

for some bounded linear functional ` : X → Rr. We now define the La-
grangian L̃ : X× U× Z× Rr → R by

L̃(x, u, p, ρ) = L(x, u, p) + 〈ρ, `(x)− f〉.

The following theorem is proved by considering the stationary points of this
Lagrangian.

Theorem 2.9.4. Consider the setting of Theorem 2.9.3 in the case where
Uad = U and Xad given by (2.35). Then there is a Lagrange multiplier
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(p, ρ) ∈ Z×Rr such that the minimizer (x, u) ∈ Fad of J satisfies the following
equations:

〈Ax+ Bu− g, δp〉 = 0 ∀δp ∈ Z (2.36a)

〈DxJ(x, u) +A∗p+ `∗(ρ), δx〉 = 0 ∀δx ∈ X (2.36b)

〈DuJ(x, u) + B∗p, δu〉 = 0 ∀δu ∈ U (2.36c)

〈`(x)− f, δρ〉 = 0 ∀δρ ∈ Rr. (2.36d)

Proof. The constrained minimizer of J(x, u) is found by making L̃(x, u, p, ρ)
stationary with respect to (x, u, p, ρ).

Example 2.9.5. We return to the robot Example 1.2.4. We wish to min-
imize

J(u) :=
1

2

∫ 1

0
u(s)2ds (2.37)

subject to
dx

dt
= u, x(0) = x0 (2.38)

and

x(1) = 0. (2.39)

To employ the preceding theory from the calculus of variations we note that
α = 0 and β = r = 1 and we define

U = L2
(
(0, 1);R

)
, Uad = U

X = H1
(
(0, 1);R

)
, Xad =

{
x ∈ X|x(1) = 0

}
Z = L2

(
(0, 1);R

)
× R.

Thus `(x) = x(1) and f = 0.

We define A,B and g by

Ax =

(
dx
dt
x(0)

)
, Bu =

(
−u
0

)
, g =

(
0
x0

)
.

The equation Ax+Bu = g is then simply an abstract form of (2.38). Because

x(t) = x0 +

∫ t

0
u(s)ds
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and
dx

dt
(t) = u(t)

we have

‖x‖2H1 =

∫ 1

0

(∣∣dx
dt

∣∣2 + |x|2
)
dt

≤
∫ 1

0

(
|u(t)|2 + 2|x0|2 + 2

∣∣∫ t

0
u(s)ds

∣∣2)dt
≤
∫ 1

0
|u(t)|2dt+ 2|x0|2 + 2

∫ 1

0
|u(s)|2ds

= 3‖u‖2L2 + 2|x0|2

= 3‖Bu‖2 + 2‖g‖2

≤ 3‖Bu− g‖2.

The last line holds because of the zero structure of Bu and g. From the
preceding we deduce that A−1 is bounded, because x = A−1(g − Bu). Thus
Theorem 2.9.3 implies the existence of a minimizer (x, u).

We now apply Theorem 2.9.4 to determine defining equations for (x, u),
together with the Lagrange multipliers (p, ρ). From (2.36a) and (2.36d) we
obtain (2.38) and (2.39) with (x, u) replaced by (x, u):

dx

dt
= u, x(0) = x0 (2.40)

and

x(1) = 0. (2.41)

To calculate (2.36b) we must find the adjoints of A and `. To this end, let
p = (λ, q) ∈ Z and we assume that λ is differentiable – we discuss this
assumption at the end of the example. We note that under this smoothness
assumption we have

〈p,Aδx〉 =

∫ 1

0
λ
dδx

dt
dt+ qδx(0)

= λ(1)δx(1)− λ(0)δx(0)−
∫ 1

0

dλ

dt
δxdt+ qδx(0)

:= 〈A∗p, δx〉.
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Also
〈ρ, `(δx)〉 = ρδx(1) := 〈`∗(ρ), δx〉.

Thus, since J is independent of x, (2.36b) gives

〈A∗p+ `∗(ρ), δx〉 = 0 ∀δx ∈ X

and hence that(
λ(1) + ρ

)
δx(1) +

(
q − λ(0)

)
δx(0)−

∫ 1

0

dλ

dt
δx dt = 0, ∀δx ∈ X.

This identity holds if we choose the Lagrange mutipliers λ, q and ρ to satisfy

dλ

dt
= 0 (2.42a)

λ(1) = −ρ, (2.42b)

q = λ(0). (2.42c)

Finally we note that DuJ(x, u) = u and that

〈p,Bδu〉 =

∫ 1

0
(−λδu)dt := 〈B∗p, δu〉

so that (2.36c) implies that∫ 1

0
(u− λ)δu dt = 0 ∀δu ∈ U

so that
u = λ. (2.43)

We note that equations (2.40), (2.41), (2.42a) and (2.43) imply that

d2x

dt2
= 0, x(0) = x0, x(1) = 0.

Therefore x(t) = (1− t)x0 and a candidate for the optimal control is u(t) =
−x0.

In Chapter 6 we will actually show that this procedure produces the optimal
control. The preceding analysis uses Theorem 2.9.4 which simply exhibits
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necessary conditions to be satisfied by the optimal control. Without proving
uniqueness of a solution to the identities given by these necessary conditions
we are unable to deduce that the candidate solution we exhibit is actually the
optimal control. In this regard, note that we assumed that λ was differentiable
and performed an integration by parts; we have not ruled out the possibility
of other solutions to the variational equations of Theorem 2.9.4 with less
regularity and therefore we do not yet know that we have exhibited the optimal
choice. Chapter 6 will contain an analysis which exhibits the optimality of
the candidate control explicitly.

We will also be interested in the case where Xad = X. The following theorem
may be proved by use of the Lagrangian L defined preceding Theorem 2.9.4.

Theorem 2.9.6. Consider the setting of Theorem 2.9.3 in the case where
Uad = U and Xad = X. Then there is a Lagrange multiplier p ∈ Z such that
the minimizer (x, u) ∈ Fad of J satisfies the following equations:

〈Ax+ Bu− g, δp〉 = 0 ∀δp ∈ Z

〈DxJ(x, u) +A∗p, δx〉 = 0 ∀δx ∈ X

〈DuJ(x, u) + B∗p, δu〉 = 0 ∀δu ∈ U.

Exercises

Exercise 2-1. Assume that A is diagonalizable: there is a invertible trans-
formation X such that A = XΛX−1 and Λ is diagonal. Prove the Cayley-
Hamilton Theorem 2.3.7.

Exercise 2-2. If x(t) satisfies ẋ(t) = Ax(t) with constant matrix A ∈ R2×2,

x(t) =

(
e−t

−2e−t

)
when x(0) =

(
1
−2

)
,

and

x(t) =

(
e−2t

−e−2t

)
when x(0) =

(
1
−1

)
,

find the general solution to ẋ = Ax, and matrix A.
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Exercise 2-3. Calculate eAt for

a) A =

(
−2 1
−1 −4

)
, b) A =

 1 2 0
0 3 0
0 0 1

 ,

Exercise 2-4. Prove Theorem 2.5.3.

Exercise 2-5. Let A and B be square and constant matrices. Show that
the solution to the matrix differential equation

dS(t)

dt
= AS(t) + S(t)B, S(0) = C,

is S(t) = exp(At)C exp(Bt).

Exercise 2-6. Find an explicit formula for the solution of the differential
equation ẋ = Ax+ bu, x(0) = x0 where

A =

(
0 ω
−ω 0

)
, b =

(
0
1

)
, x0 =

(
1
0

)
, u(t) = sin t.

Exercise 2-7. Consider the system

ẋ(t) = f(x, γ, t)

x(0) = x0.

Let x ∈ Rn, parameter γ ∈ Rl, t ∈ [0, T ] and assume that f(x, γ, t) satisfies
the assumptions of Theorem 2.6.2 with Rn replaced by Rn × Rl. Use the
result of Theorem 2.6.2 to show that for any t ∈ [0, T ], γ0 ∈ Rl and x0 ∈ Rn
the function γ 7→ ϕ(t, γ, x0) is Fréchet differentiable at γ0 and

d

dt
Dγϕ(t, γ0, x0) = Dxf(ϕ(t, γ0, x0), γ0, t)Dγϕ(t, γ0, x0)+Dγf(ϕ(t, γ0, x0), γ0, t).

Exercise 2-8. Prove Corollary 2.7.18

Exercise 2-9. Consider the nonlinear map

xk+1 = f(xk)
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with fixed point at 0 so that f(0) = 0. Define stability, asymptotic stability,
global asymptotic stability and exponential stability of this fixed point, using
Definition 2.7.1 for the continuous time case as a guide.

Exercise 2-10. Use the Liapunov function method to show the stability of
the origin in the following systems

i)

{
ẋ1 = −x31 − 2x22
ẋ2 = x1x2 − x32

,

ii)

{
ẋ1 = x2(1− x1)
ẋ2 = −x1(1− x2)

,

use V (x) = −x1 − log(1− x1)− x2 − log(1− x2).

What is the domain of attraction of the origin for the system in (i)?

Exercise 2-11.

i) A gradient system is given by

ẋ(t) = −DW (x(t)) = −
(
∂W (x)

∂x1
, . . . ,

∂W (x)

∂xn

)
with W : G → R, (G ⊂ Rn) a twice continuously differentiable func-
tion. Show that if x̄ is a minimum of W which is also an isolated critical
point (so that there exists δ > 0 such that for any x ∈ Bδ(x̄) \ {x̄},
W (x) > W (x̄) and DW (x̄) is invertible) then x̄ is an asymptotically
stable equilibrium point of the above gradient system.

ii) Find the asymptotically stable equilibria of

ẋ = −DV (x)

with V : R2 → R given by V (x1, x2) = x21(x1 − 1)2 + x22.

Exercise 2-12. Consider the system ẋ = f(x), with f : Rn → Rn con-
tinuously differentiable and f(0) = 0. Let G be an open neighborhood of
the origin in Rn and V : G → R a continuously differentiable function with
V (0) = 0. Assume that V (x) > 0 in G \ {0}. Show that
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i) if V̇ (x) = 〈f(x), DV (x)〉 is non-negative in G then the origin of the
above system is not asymptotically stable,

ii) if V̇ (x) > 0 in G \ {0} then the origin is unstable.

Exercise 2-13. Verify that for the Gaussian distribution given in Definition
2.8.1 the mean and covariance are indeed given by m and C.

Exercise 2-14. Prove that the matrices Σ, C ′ and (C ′)−1 defined in proving
Theorem 2.8.6 are positive-definite and symmetric.

Exercise 2-15. Prove that the matrices Lxx and Lyy defined in proving
Theorem 2.8.7 are positive-definite and symmetric.

Exercise 2-16. Consider a joint random variable (X,Y ) ∈ R2 specified by
the distributions X ∼ N(0, σ2) and Y |X ∼ N(X, γ2). Find the mean and
covariance of the random variables (X,Y ) and X|Y and find the marginal
distributions of X and of Y .

Exercise 2-17. Prove that the two expressions for the conditional mean m′

and covariance C ′ given in Theorem 2.8.6 and Example 2.8.12 agree.

Exercise 2-18. Prove Theorems 2.3.11 and 2.3.12.

Exercise 2-19. Show that if {ηj} is a sequence of real, independent and
identically distributed, mean zero Gaussian random variables, then

E[(

N∑
j=1

ηj)
2] =

N∑
j=1

E[η2j ].

Exercise 2-20. Show that if x1 ∼ N(m1, C1), x2 ∼ N(m2, C2) are inde-
pendent Gaussian random variables, then (x1, x2) ∼ N(m,C), where

m =

(
m1

m2

)
, C =

(
C1 0
0 C2

)
.
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Chapter 3

Controllability

This chapter is primarily concerned with open-loop control. Section 3.1
concerns discrete-time linear systems with constant matrices. In section 3.2
we set-up the continuous time problem, in general. Section 3.3 then specifies
to continuous time linear systems, considering constant matrices initially,
then the general case, and finally returning to constant design matrices and
restricted controls. In section 3.4 nonlinear problems are considered.

3.1 Discrete-Time Linear Systems

Although most of our analysis will concern continuous-time, possibly non-
linear, systems, we start by considering discrete-time linear systems as this
introduces key ideas in a straightforward setting. We study systems with
the form

xk+1 = Axk +Buk, (3.1)

where xk ∈ Rn is the state of the system at discrete time k ∈ Z+ and
uk ∈ Rm is the control to be applied to the system at discrete time k ∈ Z+.
The matrices A ∈ Rn×n and B ∈ Rn×m are fixed, independent of k.

Definition 3.1.1. For constant matrices A ∈ Rn×n and B ∈ Rn×m, the
controllability matrix is

G = G(A,B) :=
(
B,AB,A2B, . . . , An−1B

)
∈ Rn×nm.

66



Recall (Definition 2.3.2) that the rank of a matrix is the number of linearly
independent rows or columns. For G it follows from Theorem 2.3.4(i) that
rankG ≤ n since G ∈ Rn×nm.

Theorem 3.1.2. • (i) The controllability matrix has rankG < n if and
only if there is a vector y ∈ Rn\{0} such that

yTAkB = 0, for k = 0, . . . , n− 1.

• (ii) If the controllability matrix has rankG = n then, for I ∈ Rn×n the
identity, there are matrices Kj ∈ Rm×n such that

BK1 +ABK2 + · · ·+An−1BKn = I. (3.2)

Proof. The first item follows from Theorem 2.3.4(ii) whilst the second follows
from Theorem 2.3.4(iv).

To be concrete we concentrate on the problem of controlling the system so
that it reaches the origin in a finite number of steps. This suggests the
following:

Definition 3.1.3. The controllable set C is the set of initial conditions
x0 for (3.1) for which there is an integer ` ∈ Z+ and a control sequence
{uj}`−1j=0 ∈ Rm` such that x` = 0. If C = Rn then the system is said to be
controllable. In the case of linear control problems, we will also say that
(A,B) is controllable in this case.

Theorem 3.1.4. Assume that A is invertible. Then C = Rn if and only if
rankG = n.

Proof. It is straighforward to prove from (3.1) that

xk = Akx0 +

k−1∑
j=0

Ak−j−1Buj . (3.3)

We first prove that C = Rn implies rankG = n. Assume for purposes of
contradiction that rankG < n but that C = Rn. We deduce from Theorem
3.1.2(i) that there is a non-zero vector y ∈ Rn such that

yTAkB = 0, for k = 0, . . . , n− 1. (3.4)
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Since A is invertible the characteristic polynomial does not have zero as a
root: pA(0) 6= 0. Thus, in the Cayley-Hamilton Theorem 2.3.7, a0 6= 0 and
it follows that, for bj = −aj/a0,

I =
n∑
j=1

bjA
j (3.5)

so that

A−1 =
n∑
j=1

bjA
j−1.

From this and (3.4) it follows that

yTA−1B = 0

so that (3.4) can be extended to hold for k = −1. Then, from (3.5), we have

A−2 =
n∑
j=1

bjA
j−2.

From this and (3.4), now extended to k = −1, it follows that

yTA−2B = 0.

Proceeding by induction we see that

yTAkB = 0, for k ≤ n− 1. (3.6)

Since the problem is assumed controllable we deduce from (3.3) that, for
some ` ∈ Z+ and some control sequence {uj}`−1j=0,

0 = A`x0 +

`−1∑
j=0

A`−j−1Buj .

Inverting A` gives

0 = x0 +

`−1∑
j=0

A−j−1Buj .

From this and (3.6) it follows that

〈y, x0〉 = 0.
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But since x0 is arbitrary this implies that

〈y, x〉 = 0, ∀x ∈ Rn.

Hence y = 0 a contradiction. Hence C = Rn implies rankG = n.

We now prove that rankG = n implies that C = Rn. From Theorem 3.1.2(ii)
we have matrices Kj ∈ Rm×n such that

BK1 +ABK2 + · · ·+An−1BKn = I.

Thus
Bv0 +ABv1 + · · ·+An−1Bvn−1 = −Anx0

where vj−1 = −KjA
nx0. Now set uj = vn−j−1. Then, by (3.3),

xn = Anx0 +
n−1∑
j=0

An−j−1Buj

= Anx0 +

n−1∑
j=0

An−j−1Bvn−j−1

= Anx0 +
n−1∑
j=0

AjBvj

= Anx0 −Anx0
= 0.

Thus we have established that any starting point can be controlled to the
origin in n steps, provided that rankG = n. Thus rankG = n implies that
C = Rn and the proof is complete.

3.2 Continuous-Time Systems: Setup

The remainder of the chapter concerns continuous time systems. In this
section we describe the notation, together with various definitions, that we
will use throughout. Consider the ODE

ẋ = f(x, u), t > 0 (3.7a)

x(0) = x0 (3.7b)
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where x0 ∈ Rn, u : [0,∞)→ U ⊂ Rm is the control and x : [0,∞)→ Rn is
the response. The right-hand side satisfies f : Rn × U → Rn.

Throughout this chapter we consider open-loop control, and assume that our
control objective is to drive the system state to the origin, as in the discrete
setting. Recall the set of admissible controls

U =
{
u : [0,∞)→ U ⊆ Rm

∣∣∣u(·) is measurable
}
.

We mainly consider unrestricted controls, for which U = Rm, and restricted
controls defined via the choice U = [−1, 1]m. In these cases we have, respec-
tively,

U =
{
u : [0,∞)→ Rm

∣∣∣u(·) is measurable
}

and
U =

{
u : [0,∞)→ [−1, 1]m

∣∣∣u(·) is measurable
}
.

We also prove some general results in which we assume structural properties
on U , applying to both U = Rm and U = [−1, 1]m, but also to other choices
of U .

Definition 3.2.1. The fixed time t controllable set is

C(t) =
{
x0 ∈ Rn

∣∣∣∃u ∈ U : x(t) = 0
}
.

Then
C =

⋃
t>0

C(t)

is the controllable set. If C = Rn then the system is said to be controllable.
We will also say that (A,B) is controllable in this case.

Remarks 3.2.2. Real systems may be subjected to disturbances, not ac-
counted for in our model equation (3.7), which act to push the system away
from the target state. In such situations it is desirable to be able to steer all
nearby states to the target. Hence it is important that C contains a neigh-
bourhood of the origin. The ideal situation would be, of course, that C = Rn.
For both the linear and nonlinear systems, and for unrestricted and restricted
controls, we will study the structure of the set C in what follows.

Definition 3.2.3. The reachable set at time t, K(t, x0), is defined as fol-
lows:

K(t, x0) =
{
x1

∣∣∣∃u ∈ U : x(0) = x0, x(t) = x1

}
.
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Let x1 ∈ K(t, x0). Then we may chose u so that x(t) solves (3.7) with
x(0) = x0 and x(t) = x1. Define z(t) = x(t1− t) and ũ = u(t1− t). It follows
that z solving the time-reversed system

ż = −f(z, ũ), t > 0 (3.8a)

z(0) = x1 (3.8b)

will satisfy z(t1) = x0. If we define K− to be the reachable set for the time-
reversed system then we have proved the following theorem which will enable
us to trasfer results from controllable sets to reachable sets, and vice-versa.

Theorem 3.2.4. For the ODE (3.7) C(t1) = K−(t1, 0).

3.3 Linear Systems

In this section we study controllability problems for the linear system

ẋ = Ax+Bu, t > 0 (3.9a)

x(0) = x0. (3.9b)

We assume:

Assumption 3.3.1. The control u ∈ U is locally integrable, the matrix-
valued functions A,B satisfy A ∈ C(R+,Rn×n) and B ∈ C(R+,Rn×m).

Before reading this material it is useful to recap the basic results concerning
linear ODEs which are contained in section 2.5. By Theorem 2.5.2 we see
that, under Assumption 3.3.1, there is a unique x ∈ C([0, T ];Rn) solving
(3.9) for any T > 0 (see Remark 2.5.1). If U is bounded then it is sufficient
to assume that u is measurable, and to drop local integrability. In this
situation u ∈ L∞(R+;Rm) and therefore locally integrability of u follows.

We will repeatedly use the fact that the solution of (3.9) is given, from (2.7),
by the formula

x(t) = S(t)x0 +

∫ t

0
S(t)S−1(s)B(s)u(s)ds, t ∈ [0, T ]. (3.10)

From this it follows that

S(t)−1x(t) = x0 +

∫ t

0
S−1(s)B(s)u(s)ds, t ∈ [0, T ]. (3.11)
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Note that x0 ∈ C(t) thus implies that there is u ∈ U such that

x0 = −
∫ t

0
S−1(s)B(s)u(s)ds. (3.12)

In the setting where A and B are constant, we hence obtain

x(t) = etAx0 +

∫ t

0
e(t−s)ABu(s)ds; (3.13)

and

e−tAx(t) = x0 +

∫ t

0
e−sABu(s)ds. (3.14)

In this case x0 ∈ C(t) hence implies that there is u ∈ U such that

x0 = −
∫ t

0
e−sABu(s)ds. (3.15)

The controllability matrix is defined as in Definition 3.1.1:

G = G(A,B) :=
(
B,AB,A2B, . . . , An−1B

)
.

3.3.1 Unrestricted Controls

The following theorem is analogous to Theorem 3.1.4; note, however, that it
is not necessary to assume that A is invertible in the continuous time setting.

Theorem 3.3.2. Consider the linear system (3.9) with constant A and B,
and unrestricted controls. Then C = Rn if and only if rankG = n.

Proof. We first prove that C = Rn implies that rankG = n. Suppose that
C = Rn and assume, for contradiction, rankG < n. It follows from Theorem
3.1.2(i) that there is vector y ∈ Rn\{0} such that

yTAkB = 0, for k = 0, . . . , n− 1.

From the Cayley-Hamilton Theorem 2.3.7 it follows that

An = −an−1An−1 − · · · − a1A− a0I.
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From this it follows that

yTAnB = −an−1yTAn−1B − · · · − a1yTAB − a0yTB = 0.

Similarly

yTAn+1B = −an−1yTAnB − · · · − a1yTA2B − a0yTAB = 0.

Proceeding by induction we see that

yTAkB = 0, for k ∈ Z+. (3.16)

Since, by (2.9),

e−As =
∞∑
k=0

(−1)kAk

k!
sk

the identities (3.16) imply that

yT e−AsB = 0, for all s ∈ R. (3.17)

Since C = Rn, equation (3.15) shows that for any x0 ∈ Rn, there is a time
t = t(x0) and a control u : [0, t)→ Rm, such that

x0 = −
∫ t

0
e−sABu(s)ds.

Hence yTx0 = 0. But x0 is arbitrary, and hence y = 0 contradicting the
assumption that rankG < n.

Now assume that rankG = n. Lemma 3.3.3 which follows shows that C(t) =
Rn for any t > 0 and hence that C = Rn. This completes the proof.

Lemma 3.3.3. Consider the linear system (3.9) with constant A and B,
and unrestricted controls. Then rankG = n implies that C(t) = Rn for any
t > 0.

Proof. By Theorem 3.1.2(ii) (see equation (3.2)) the condition rankG = n
implies that, for I ∈ Rn×n the identity, there are matrices Kj ∈ Rm×n such
that

BK1 +ABK2 + · · ·+An−1BKn = I.

or
n∑
j=1

Aj−1BKj = I. (3.18)
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Now fix any t > 0. Let ϕ be any function in Cn−1([0, t];R) satisfying

djϕ

dtj
(0) =

djϕ

dtj
(t) = 0, j = 0, 1, 2, . . . , n− 1

and ∫ t

0
ϕ(s)ds = 1.

A polynomial of sufficiently high degree can be used, for example. Now set

ψ(s) = −eAsx0ϕ(s), s ∈ [0, t]

and note that, by construction, ψ satisfies the same homogeneous boundary
conditions as ϕ:

djψ

dtj
(0) =

djψ

dtj
(t) = 0, j = 0, 1, 2, . . . , n− 1.

Now choose the control

u(s) = K1ψ(s) +K2
dψ

ds
(s) + · · ·+Kn

dn−1ψ

dsn−1
(s),

=

n∑
j=1

Kj
dj−1ψ

dsj−1
(s), s ∈ [0, t]. (3.19)

We will show that this control implies that x(t) = 0.

Note that, using the boundary conditions on ψ and Theorem 2.5.3, integra-
tion by parts shows that∫ t

0
eA(t−s)BKj

dj−1ψ

dsj−1
(s)ds =

∫ t

0
eA(t−s)ABKj

dj−2ψ

dsj−2
(s)ds.

Further integrations by parts demonstrate that, for j = 1, . . . , n,∫ t

0
eA(t−s)BKj

dj−1ψ

dsj−1
(s)ds =

∫ t

0
eA(t−s)Aj−1BKjψ(s)ds.

Hence, summing this identity over j = 1, . . . , n and using (3.18) and (3.19)
on the right and left hand sides respectively, we obtain∫ t

0
eA(t−s)Bu(s)ds =

∫ t

0
eA(t−s)ψ(s)ds.
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Thus, using (3.13),

x(t) = eAtx0 +

∫ t

0
eA(t−s)Bu(s)ds

= eAtx0 +

∫ t

0
eA(t−s)ψ(s)ds

= eAtx0 −
∫ t

0
eA(t−s)eAsx0ϕ(s)ds

= eAtx0 − eAtx0
∫ t

0
ϕ(s)ds

= 0.

Since x0 is arbitrary we have shown that C(t) = Rn for any t > 0 and hence
that C = Rn.

Corollary 3.3.4. Consider the fixed matrices A ∈ Rn×n and B ∈ Rn×m.
For any y ∈ Rn define w(t) = yT e−AtB. Then rankG = n if and only if
w(·) 6= 0 (w is not the zero function) for every y 6= 0.

Proof. If. Assume that rankG < n. Then the proof of Theorem 3.3.2
demonstrates that there exists non-zero y for which (3.17) holds:

yT e−AsB = 0, for all s ∈ R. (3.20)

For only if assume that there exists non-zero y such that (3.20) holds.
Differentiating k = 0, . . . , n− 1 times and setting s = 0 gives

yTAkB = 0, for k = 0, . . . , n− 1.

Thus, by Theorem 3.1.2(i) we see that rankG < n.

Given two matrices A ∈ Rn×n, B ∈ Rn×m define y = y(A,B) ∈ Rk, with
k = n2 + mn, to be the vector made up of the entries of the two matrices.
Now consider the two linear systems

ẋ = A1x+B1u,

ẋ = A2x+B2u

with Ai ∈ Rn×n, Bi ∈ Rn×m. Define the distance between the two systems
to be the Euclidean norm of the vector y(A1, B1)− y(A2, B2) and note that

|y(A1, B1)− y(A2, B2)|2 = ‖A1 −A2‖2 + ‖B1 −B2‖2,
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with ‖ · ‖ the Frobenius norm and | · | the Euclidean norm. This distance
function then makes the set of all linear control systems{

ẋ = Ax+Bu
}

into a metric space M.

Theorem 3.3.5. Consider the linear system (3.9) with constant A and B,
and unrestricted controls. The set of all controllable linear autonomous sys-
tems is open and dense in the metric space M.

Proof. Openness We need to show that if, for the system

ẋ = Ax+Bu,

we have rankG(A,B) = n then rankG(Ã, B̃) = n provided

‖A− Ã‖2 + ‖B − B̃‖2 ≤ ε2

for ε sufficiently small.

Recall from Theorem 2.3.4(iii) that rankG(A,B) = n if and only if ∃H ∈
Rn×n, a submatrix formed from the columns of G(A,B), with detH 6= 0.
The determinant is a continuous function of its entries and hence, for ε small
enough we have det H̃ 6= 0 if H̃ is the submatrix of G(Ã, B̃) chosen using
the same columns as used to construct H. Thus rankG(Ã, B̃) = n.

Density We need to show that, if rankG(A,B) < n then, for any ε > 0,
∃Ã ∈ Rn×n and B̃ ∈ Rn×m such that

‖A− Ã‖2 + ‖B − B̃‖2 ≤ ε2

holds and rankG(Ã, B̃) = n.

Consider any n × n submatrix H made from columns of G(A,B). We can
think of detH as a polynomial of the k = n2 +mn entries of A and B:

detH = φ
(
y(A,B)

)
.

Then, since rankG(A,B) < n we have φ
(
y(A,B)

)
= 0. But a nontrivial

polynomial φ cannot vanish identically on any k−dimensional ball centred at
y(A,B), because otherwise all partial derivatives are zero and all coefficients
vanish. Therefore ∃ξ ∈ Rk 6= 0 such that φ

(
y(A,B) + λξ

)
6= 0 for all λ

sufficiently small. From this it follows that ∃Ã, B̃ arbitrarily close to A,B
such that rankG(Ã, B̃) = n.
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Remarks 3.3.6. The above theorem implies that, if a physical process is
modelled by the linear system (3.9), and the parameters are only approxi-
mately known then establishing controllability is still useful: if a given in-
stance of (3.9) is controllable then so is any nearby system.

3.3.2 Symmetric and Convex Controls

We continue our study of the linear control system given by (3.9), now
returning to the general setting where A and B may depend on time t. We
recall that the control u is contained in the set U given by (1.1), and the
set U which defines it. Recall also Definitions 2.4.7 and 2.4.8 concerning
symmetric and convex sets respectively.

Theorem 3.3.7. Consider the linear system (3.9) under Assumptions 3.3.1
and assume that U in definition (1.1) of U is convex (resp. symmetric).
Then, for the linear system (3.9), the controllable set C is convex (resp.
symmetric).

Proof. Note first that U convex (resp. symmetric) implies that U is convex
(resp. symmetric). First we prove the stated result concerning symmetry.
Let x0 ∈ C(t) for some t > 0. It suffices to show that −x0 ∈ C(t). By (3.12)
we have

x0 = −
∫ t

0
S−1(s)B(s)u(s)ds (3.21)

and hence

−x0 = −
∫ t

0
S−1(s)B(s)

(
−u(s)

)
ds.

With initial condition −x0 and choosing the control −u(t) in (3.10) gives

x(t) = −S(t)x0 −
∫ t

0
S(t)S−1(s)B(s)u(s)ds

= −S(t)
(
x0 +

∫ t

0
S−1(s)B(s)u(s)ds

)
= 0

where the last line follows from (3.21). This proves symmetry.

Now we consider convexity. Assume that x0, x̂0 ∈ C. Then there exist t, t̂
such that x0 ∈ C(t) and x̂0 ∈ C(t̂). Without loss of generality we assume that
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t ≤ t̂. Then, from (3.12), for some u, û ∈ U ,

x0 = −
∫ t

0
S−1(s)B(s)u(s)ds

x̂0 = −
∫ t̂

0
S−1(s)B(s)û(s)ds.

Now define

ũ(s) = u(s), 0 ≤ s ≤ t,
ũ(s) = 0, t < s ≤ t̂.

Clearly

x0 = −
∫ t̂

0
S−1(s)B(s)ũ(s)ds

and therefore x0 ∈ C(t̂). For λ ∈ [0, 1] we have

λx0 + (1− λ)x̂0 = −
∫ t̂

0
S−1(s)B(s)

(
λũ(s) + (1− λ)û(s)

)
ds. (3.22)

Now U is convex becuase U is convex and hence
(
λũ(s) + (1− λ)û(s)

)
∈ U .

If x(0) = λx0 + (1− λ)x̂0 then, by (3.10) and (3.22)

x(t̂) = S(t̂)
(
λx0 + (1− λ)x̂0) +

∫ t̂

0
S(t̂)S−1(s)B(s)

(
λũ(s) + (1− λ)û(s)

)
ds

= 0.

Thus λx0 + (1− λ)x̂0 ∈ C(t̂) ⊆ C and the result is proved.

Remarks 3.3.8. • Since both U = Rm and U = [−1, 1]m are convex
and symmetric, the preceding theorem holds for both these cases.

• The arguments in the proof may be readily adapted to show that if U
is convex (resp. symmetric), then C(t) is convex (resp. symmetric) for
any t ∈ R+.

We now prove a related result concerning convexity which will be useful to
us in the study of optimal control in Chapter 6. Let U = L2

(
[0, T ];Rm) and

let
Uad = {u ∈ U : x(T ) = 0}.
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Lemma 3.3.9. Uad is convex.

Proof. A function u ∈ Uad if and only if

0 = eATx0 +

∫ T

0
eA(T−s)Bu(s)ds.

If ui ∈ Uad for i = 1, 2 then

0 = eATx0 +

∫ T

0
eA(T−s)Bui(s)ds.

Multiplying this equation by λ for i = 1 and by (1−λ) for i = 2 and adding
gives

0 = eATx0 +

∫ T

0
eA(T−s)B

(
λu1(s) + (1− λ)u2(s)

)
ds.

Thus λu1 + (1− λ)u2 ∈ Uad.

Example 3.3.10. Consider the two dimensional system

ẋ1 = 0,

ẋ2 = u

with xi(t) ∈ R and u : R+ → [−1, 1]. This system is of the form (3.9) with

A =

(
0 0
0 0

)
, B =

(
0
1

)
.

It is clear that, since x1(t) = x1(0) for all t > 0, the controllable set is simply

C =
{

(x1, x2)|x1 = 0
}
.

This set is symmetric and convex. However, note that C does not contain a
neighbourhood of the origin.

3.3.3 Restricted Controls

We now proceed to study restricted controls. Motivated by the example
at the end of the previous section, it is natural to ask what conditions are
required on the matrices A and B to ensure that, when the controls are
restricted, C contains a neighbourhood of the origin. This is the goal of the
next theorem which generalizes Theorem 3.3.2 to restricted controls. Recall
(Definition 2.4.2) that the interior and boundary of a set Ω ⊆ Rn.
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Theorem 3.3.11. Consider the linear autonomous system (3.9) with A and
B constant matrices. For restricted controls we have

rankG = n if and only if 0 ∈ Int C.

Proof. Suppose rankG < n. Then the linear span of the columns of G has
dimension less than or equal to n− 1. It follows from Theorem 3.1.2(i) that
there is vector y ∈ Rn\{0} such that

yTAkB = 0, for k = 0, . . . , n− 1.

Following the proof of Theorem 3.3.2 we deduce, by the Cayley-Hamilton
theorem, that

yTAkB = 0, for k ∈ Z+

and hence that yT e−AsB = 0. Now assume that x0 ∈ C(t). Then, by (3.14),
there exists u ∈ U such that

x0 = −
∫ t

0
e−AsBu(s)ds

so that

yTx0 = −
∫ t

0
yT e−AsBu(s)ds = 0.

Thus C(t) lies in the hyperplane orthogonal to y 6= 0 for all t ≥ 0. Hence C =⋃
t>0 C(t) lies in the same hyperplane, from which it follows that Int C = ∅,

and in particular that 0 /∈ Int C.

To show the converse, suppose that 0 /∈ Int C so that 0 /∈ Int C(t) for all
t > 0. Note that 0 ∈ C(t) for all t > 0 as can be seen by choosing u to
be identically zero. We deduce that 0 ∈ ∂C(t). Since C(t) is convex (see
Remarks 3.3.8) we deduce the existence of a hyperplane through 0 such that
C(t) lies on one side of the hyperplane. More precisely (see Lemma 3.3.15)
there exists a non-zero vector y ∈ Rn such that yTx0 ≤ 0 for all x0 ∈ C(t).
Pick any u ∈ U and any t > 0 and define x0 by

x0 = −
∫ t

0
e−AsBu(s)ds.

Then (3.14) shows that x0 ∈ C(t) and therefore

yTx0 = −
∫ t

0
yT e−AsBu(s)ds ≤ 0.
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Hence ∫ t

0
yT e−AsBu(s)ds ≥ 0 ∀u ∈ U .

By Lemma 3.3.14 below this implies that

yT e−AsB = 0 ∀s ≥ 0. (3.23)

Setting s = 0 gives yTB = 0. Differentiating the identity (3.23) with respect
to s and setting s = 0 gives yTAB = 0 and differentiating k times and
setting s = 0 gives

yTAkB = 0, k = 1, 2, . . . , n− 1.

By Theorem 3.1.2(i) this establishes that rankG < n as required.

Corollary 3.3.12. Consider the linear autonomous system (3.9) with A
and B constant matrices. For unrestricted or restricted controls we have the
following: if rankG < n then there exists a hyperplane in Rn which contains
C(t) for any t > 0.

Corollary 3.3.13. Consider the linear autonomous system (3.9) with A and
B constant matrices with unrestricted or restricted controls. For any y ∈ Rn
define w(t) = yT e−AtB. Then rankG = n if and only if w(·) 6= 0 (w is not
the zero function) for every y 6= 0.

Proof. We have already proved this result in the case of unrestricted controls
as Corollary 3.3.4; the case of unrestricted controls is similar and is left as
Exercise 3-15.

Lemma 3.3.14. Let t > 0 and y ∈ Rn. If for any u ∈ U we have∫ t

0
yT e−AsBu(s)ds ≥ 0 (3.24)

then yT e−AsB = 0.

Proof. Let v : R+ → Rm be defined by vT (s) = yT e−AsB. Since u ∈ U
implies −u ∈ U we can replace u by −u in (3.24) which changes the sign of
the identity. Hence∫ t

0
yT e−AsBu(s)ds =

∫ t

0
vT (s)u(s)ds = 0
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for any u ∈ U . Now suppose that for some s0 ∈ [0, t] we have v(s0) 6= 0.
By continuity there is an interval I containing s0 on which v(s) 6= 0 for any
s ∈ I.

Define u ∈ U by

u(s) = 0, s 6= I,

u(s) = λv(s)/|v(s)|2, s ∈ I

where λ > 0 is chosen so that |u(s)|∞ ≤ 1 for all s, so that u ∈ U . Then∫ t

0
vT (s)u(s)ds =

∫
I
λds > 0.

This is a contradiction and the desired result follows.

Recall Definition 2.4.2 of the boundary of a set.

Lemma 3.3.15. Let Ω ⊂ Rn be a convex set. Then z is in ∂Ω if and only
if there exists a vector y ∈ Rn such that yT (x− z) < 0 for any x ∈ Ω.

Proof. First suppose that z ∈ ∂Ω. Since Ω is convex there is a hyperplane H
through z such that Ω is entirely on one side of H. Choose y ⊥ H pointing
in a direction away from Ω. Appeal to the figure to see that yT (x− z) < 0.

Now we prove the converse. Suppose that z ∈ Int Ω. Then for any y ∈ Rn
there is ε > 0 such that z + εy ∈ Int Ω. For x = z + εy we have

yT (z − x) = yT (−εy) = −ε‖y‖2 < 0

and the proof is complete.

Example 3.3.16. Consider the 1−dimensional system

ẋ(t) = x(t) + u(t).

Since u(t) ∈ [−1, 1] for all t ≥ 0 we deduce that ẋ(t) ≥ 0 if x(t) ≥ 1 and
ẋ(t) ≤ 0 if x(t) ≤ 1. Thus C ⊂ (−1, 1). For any x0 ∈ C(t) we have

x0 = −
∫ t

0
e−su(s)ds
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for some u ∈ U . Thus

x0 ≤
∫ t

0
e−s|u(s)|ds

=

∫ t

0
e−sds

= 1− e−t < 1.

Now let |x0| ≤ 1− e−t and define the control u as follows. For s ∈ [0, t∗] we
set

u(s) = 1, x0 < 0

u(s) = −1, x0 > 0;

and for s ∈ (t∗, t] we set u = 0. Here t∗ is chosen so that x(t∗) = 0 which
requires, in the case x0 > 0, that

0 = et
∗
x0 −

∫ t∗

0
e(t

∗−s)ds

so that t∗ is the unique solution of the equation∫ t∗

0
e−sds = x0

given by 1 − e−t∗ = x0 (note that 0 ≤ x0 < 1 − e−t so the equation indeed
has a unique solution t∗ ∈ [0, t].) A similar argument holds when x0 < 0.

Then we see that
C(t) = [−1 + e−t, 1− e−t]

so that
C =

⋃
t>0

C(t) = (−1, 1).

The preceding example demonstrates a situation, with n = 1, where 0 ∈ Int C
but C 6= R. We now give conditions which ensure global controllability, i.e.
C = Rn.

Theorem 3.3.17. Let rankG = n for the linear system (3.9) with A ∈ Rn×n
constant. Consider a control u ∈ U with U = [−1, 1]m. If for every eigenvalue
of A we have Reλ < 0 then C = Rn.
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Proof. Let B0(δ) denote the ball of radius δ centred at the origin in Rn. By
Theorem 3.3.11 we have 0 ∈ Int C and hence, for small enough δ, B0(δ) ⊂ C.

Now for any given x0 ∈ Rn set u(t) = 0 for t ∈ [0, t∗], where t∗ will be
determined in what follows. The dynamics on [0, t∗] is given by

x(t) = eAtx0

=
n∑
i=1

αi

(ki−1∑
j=0

(A− λiI)j
tj

j

)
eλitv(i)

as we showed in (2.11). Here the λi are the eigenvalues of A and all have
negative real parts, whilst the v(i) are the generalized eigenvectors of A. It
is immediate that there is t∗ = t∗(δ) > 0 such that ‖x(t∗)‖ ≤ δ.

Let x∗ = x(t∗). Since x∗ ∈ B0(δ) ⊂ C, there exists u∗ ∈ U which brings the
system (3.9) started at x0 = x∗ to the origin in finite time T . For the system
started at x0, define

u(t) =

{
0 t ∈ [0, t∗]

u∗(t− t∗) t ∈ (t∗, t∗ + T ].

}
.

Then x(t∗ + T ) = 0 by construction and we have proved the desired result.

Example 3.3.18. rocket The matrix A here has a zero eigenvalue of
mutiplicity two and so the preceding theorem does not apply. We show later
that the assumptions can be weakened to deal with some situations of this
type.

Theorem 3.3.19. Consider the linear system (3.9) with constant A and
B, and restricted controls. The set of systems for which the controllable set
contains an open neighbourhood of the origin is open and dense in the metric
space M.

Proof. The proof is similar to that for Theorem 3.3.5, combined with Theo-
rem 3.3.11. Indeed, by Theorem 3.3.11, rankG(A,B) = n implies 0 ∈ Int C.
The proof of Theorem 3.3.5 shows that the set of matrices {A,B} with
rankG(A,B) = n is open and dense in the space of pairs of metrices of
n× n, n×m size. Hence the linear control systems for which 0 ∈ Int C are
dense in the metric space of all linear control systems (with the same norm
as above).
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For the following it is useful to recall the real Jordan canonical form discussed
at the end of section 2.3.

Theorem 3.3.20. Consider the linear system (3.9) with A ∈ Rn×n constant.
Consider a control u ∈ U with U = [−1, 1]m. Then C = Rn if and only if
rankG = n and Reλ ≤ 0 for every eigenvalue λ of A.

Proof. If Suppose that rankG = n and Reλ ≤ 0 for every eigenvalue λ
of A. Assume for contradiction that C 6= Rn. By convexity of C (Theorem
3.3.7) we have from Lemma 3.3.15 that ∃z ∈ Rn, on the boundary of C, and
non-zero y ∈ Rn such that yT (x0 − z) ≤ 0 for any x0 ∈ C. Hence if C 6= Rn
there exists y ∈ Rn and α = yT z ∈ R such that yTx0 ≤ α for all x0 ∈ C.
We will establish a contradiction to this, by showing that for any nonzero
y ∈ Rn and α ∈ R we can find x0 ∈ C such that yTx0 > α.

Let nonzero y ∈ Rn and α ∈ R be given. Then x0 ∈ C iff there exists t ∈ R+

and u ∈ U such that

x0 = −
∫ t

0
e−AsBu(s)ds.

Thus we want to show that ∃u ∈ U such that

−
∫ t

0
yT e−AsBu(s)ds > α.

Let v(s) = (yT e−AsB)T ∈ Rm. Since rankG = n, we know by Corollary
3.3.4 that v(·) 6= 0 on [0, t]. Now define

u0(s) =

{
− v(s)
|v(s)| when v(s) 6= 0,

0, when v(s) = 0

}

and u(s) = λu0(s) with λ > 0 chosen to ensure that |u|∞ ≤ 1 so that u ∈ U .
Then

−
∫ t

0
vT (s)u(s)ds = λ

∫ t

0
|v(s)|ds.

We will show that

lim
t→∞

∫ t

0
|v(s)|ds =∞

so that, for some t > 0,

−
∫ t

0
vT (s)u(s)ds = λ

∫ t

0
|v(s)|ds > α.
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We argue this step by contradiction too. Assume that

∫ ∞
0
|v(s)|ds <∞ (3.25)

and let

φ(t) :=

∫ ∞
t

v(s)ds

noting that the convergence of the integral in (3.25) implies immediately
that

φ(t)→ 0 as t→∞. (3.26)

Let p be the characteristic polynomial of A. Since p(A) = 0 we have

p
(
− d

dt

)
vT (t) = p

(
− d

dt

)(
yT e−tAB

)
= yT

(
p
(
− d

dt

)
e−tA

)
B

= yT p
(
A
)
e−tAB

= 0.

Since − d
dtφ = v we deduce that φ(t) satisfies

− d

dt
p
(
− d

dt

)
φ = 0.

Hence each component of φ is a linear combination of terms of the form
a(t)eµt where µ solves µp(µ) = 0. After imposing an ordering on the µ we
obtain

µj = −λj , j = 1, . . . , n

µj+1 = 0.

Thus the kth component of φ(t) may be written as

k(k)(t) =

n∑
j=1

a
(k)
j (t)e−λjt + a

(k)
n+1(t)

and the a
(k)
j are polynomials in t. Since −λj ≥ 0 this contradicts (3.26) and

the If part of the proof is concluded.

Only If Here we must assume that either rankG < n or that Reλ > 0 for
some eigenvalue λ of A and we consider the two cases separately. The first
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assumption, rankG < n, implies by Corollary 3.3.12 that C(t) is contained
in a hyperplane in Rn for all t > 0 and it follows that C is contained in
the same hyperplane. Hence C 6= Rn and we are done. Thus it remains to
consider the situation where Reλ1 > 0 for some eigenvalue λ1 of A. Recall
the real Jordan form A = Q−1JQ and set x = Qz. Then (3.9) gives

ż(t) = Q−1AQz +Q−1Bu

= Ãz + w

Note that, since |u(t)|∞ ≤ 1 for all t, it follows that there is constant K > 0
such that |w|∞ ≤ K for all t.

Without loss of generality we may assume that λ1 appears in J1 and consider
the case of real and complex λ1 seperately. In the real case we find that the
first component of z satisfies the equation

ż(1) = λ1z(1) + w(1).

Now chose z(1)(0) > K
λ1
. Then z(1)(t) is always increasing and the origin

cannot be reached. Hence C 6= Rn.

Now consider the complex case where λ1 = α+ iβ for some α > 0. The first
two equations for z take the form

ż(1) = αz(1) − βz(2) + w(1)

ż(2) = βz(1) + αz(2) + w(2).

Let v = (z(1), z(2))T and ξ = (w(1), w(2))T . Taking an inner-product of the
equations with v we find that

1

2

d

dt
|v|2 = α|v|2 + vT ξ

≥ |v|
(
α|v| − |ξ|

)
Note that |ξ| ≤

√
2K. From this it follows that, if |v(0)| > 2

√
K/α then

|v(t)| is increasing and the origin cannot be reached. Hence C 6= Rn. This
completes the proof.
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3.4 Nonlinear Systems

In this section we study the controllable set for the nonlinear system (3.7):

ẋ = f(x, u)

x(0) = x0

with x ∈ Rn, f : Rn × [−1, 1]m → Rn and u ∈ U . As in the linear problems
studied previously, we assume that our target is 0 ∈ Rn. We denote the
solution, and its dependence on initial condition x0 and control u, by x(t) =
ϕ(t, x0, u).

Assumption 3.4.1. The function f : Rn× [−1, 1]m → Rn is continuous and
there is c > 0 such that, for all x, y ∈ Rn and u ∈ [−1, 1]m,

|f(x, u)| ≤ c
(
1 + |x|+ |u|

)
,

|f(x, u)− f(y, u)| ≤ c|x− y|,

The following is an immediate corollary of Theorem 2.6.1:

Corollary 3.4.2. In equation (3.7) suppose that f satisfies Assumptions
3.4.1. Then for any given integrable function u : [0, T ] → [−1, 1]m there
exists exactly one solution of equation (3.7).

Recall the reachable set from Definition 3.2.3 and the time-reversed system
given by (3.8):

ż = −f(z, ũ), t > 0

z(0) = x1

We denote the solution, and its dependence on initial condition x0 and con-
trol u, by x(t) = ϕ−(t, x1, u). Let K−(t) = K−(t, 0) the reachable set from
x1 = 0. The reachable set K−(t) for (3.8) is the same as the controllable
set C(t) for (3.7). Therefore, the statement that Bδ(0) ⊂ C(t) for (3.7) is
equivalent to saying that Bδ(0) ⊂ K−(t) for (3.8). We use this fact to prove
the following.

Theorem 3.4.3. Consider the system (3.7) with f(0, 0) = 0 and f : Rn ×
[−1, 1]m → Rn continuously differentiable and satisfying Assumptions 3.4.1.
Let A := Dxf(0, 0) and B := Duf(0, 0). If rankG(A,B) = n then 0 ∈ Int C.
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Proof. We will show that ∃δ sufficiently small and T sufficiently large so that
Bδ(0) ⊂ K−(T ) for the time-reversed system (3.8).

Consider first the linearized time-reversed system

ż = −Az −Bu,
z(0) = 0.

Since rankG(A,B) = n we deduce from Theorem 3.3.11 that there exists
δ > 0 such that 0 ∈ Rn can be steered to any point in Bδ(0).

Let e1, . . . , en be canonical basis vectors in Rn and choose αi ∈ (0, δ), i =
1, . . . , n. Then there exist (ui, Ti) ∈ U × R+ such that

αiei = −
∫ Ti

0
e−A(1−s)Bui(s)ds, i = 1, . . . , n.

Set T = max1≤j≤n Tj and assume, without loss of generality, that T = T1.
Extend the ui(s), currently defined on (0, Ti) to (0, T ) by setting ui ≡ 0 for
t ∈ (Ti, T ). We then have

αiei = −
∫ T

0
e−A(1−s)Bui(s)ds, i = 1, . . . , n. (3.27)

Now set γ = (γ1, . . . , γn) and construct the control

u(t, γ) =

n∑
i=1

γiui(t).

We will show that, by appropriate choice of the γ, we can steer the solution
ϕ−
(
t, 0, u(t, γ)

)
of (3.8) with ũ = u(t, γ) and x1 = 0 to an arbitrary point in

Bδ(0). Note that ϕ−
(
t, 0, u(t, γ)

)
satisfies

ϕ−
(
t, 0, u(t, γ)

)
= −

∫ t

0
f
(
ϕ−
(
s, 0, u(s, γ)

)
, u(s, γ)

)
ds. (3.28)

Let

vi(t) =
∂ϕ−

∂γi

(
t, 0, u(t, γ)

)∣∣∣
γ=0

so that

V (t) =
(
v1(t) v2(t) . . . vn(t)

)
=
∂ϕ−

∂γ

(
t, 0, u(t, γ)

)∣∣∣
γ=0

.
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This derivative exists by Exercise 2-7.

By differentiating (3.28) with respect to each γi we find

V (t) = −
∫ t

0

∂

∂γ
f
(
ϕ−
(
s, 0, u(s, γ)

)
, u(s, γ)

)∣∣∣
γ=0

ds

= −
∫ t

0
Dxf

(
ϕ−(s, 0, 0), 0

)
V (s) +Duf

(
ϕ−(s, 0, 0), 0

)(
u1(s) . . . un(s)

)
ds

= −
∫ t

0
AV (s) +B

(
u1(s) . . . un(s)

)
ds

Hence

vi(t) = −
∫ t

0
Afvi(s) +Bfui(s) ds

which implies that vi(T ) = αiei and therefore

V (T ) =
(
v1(T ) . . . vn(T )

)
=
(
α1e1 . . . αnen

)
.

Since αi > 0 for i = 1, . . . , n and ei are linearly independent, V (T ) is invert-
ible. Now consider the map F : Rn × Rn → Rn to be defined as

F (x, γ) = x− ϕ−
(
T, 0,

n∑
i=1

γiui
)
.

The function F is continuously differentiable, with F (0, 0) = 0 andDγF (0, 0) =
−V (T ) invertible. Hence by the Implicit Function Theorem (Theorem 2.4.4)
there exists θ > 0 and Γ(x) =

(
Γ1(x), · · · ,Γn(x)

)
continuous at zero with

Γ(0) = 0 such that F
(
x,Γ(x)

)
= 0. Therefore

ϕ−
(
t, 0,

n∑
i=1

Γi(x)ui(t)
)

= 0

for any x ∈ Bθ(0). Thus for each x ∈ Bθ(0) the control
∑n

i=1 Γi(x)ui(t)
steers the system from 0 at time t = 0 to x at time t = T .

Thus we have proved that Bθ(0) ⊂ K−(T ) for (3.8) and hence that Bθ(0) ⊂
C(T ) for (3.7).

Remarks 3.4.4. • By Exercise 3-7 the above theorem implies that the
controllable set C is open.

• Another tool used to discuss such examples is the concept of Lie bracket,
based on ideas from differential geometry.
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• rankG(A,B) < n does not imply 0 /∈ Int C.

Example 3.4.5. Consider the system

ẋ1 = x1 + sinx2 + x1e
x2 (3.29a)

ẋ2 = x22 + u (3.29b)

where u ∈ U . We have

A =

(
2 1
0 0

)
, B =

(
0
1

)
.

Thus
rank

(
B,AB

)
= rank I = 2

and so the system (3.29) is locally controllable by Theorem 3.4.3.

Now replace u by u3 in (3.29) to obtain

ẋ1 = x1 + sinx2 + x1e
x2 (3.30a)

ẋ2 = x22 + u3 (3.30b)

where u ∈ U . Theorem 3.4.3 does not apply in this case because B = 0.
But the system is still locally controllable because, if u? steers (3.29) from

x0 ∈ Bδ(0) to 0 then (u?)
1
3 steers (3.30) from x0 to 0.

Exercises

Exercise 3-1. Consider the discrete-time control system (3.1) with n =
2,m = 1 and B = (1, 0)T and unrestricted controls. Under what condition
on A ∈ R2×2 is the system controllable?

Exercise 3-2. Consider a discrete-time control system of the form

zn+k +

k−1∑
j=0

αjzn+j = un.

Here zn, un ∈ R and the control sequence {un}n≥0 is unrestricted. By intro-
ducing the vector

xn := (zn, · · · , zn+k−1)T
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write the system in the form (3.1) for matrices A,B and appropriate dimen-
sions m,n which you should specify. Is the system controllable?

Exercise 3-3. Consider the control system

ẋ =

 0 1 0
0 −1 1
0 0 −1

 x+ u b

with unestricted control u : [0,∞)→ R measurable. Consider choosing b to
be equal to each of the three unit vectors ei ∈ R3. For which i is C = R3? If
C 6= R3 then characterize C.

Exercise 3-4. Let A ∈ Rn×n and B ∈ Rn×m and assume that rank B = p.
Prove that
rank [B, AB, . . . , An−1B] = n implies that rank [B, AB, . . . , An−pB] = n.
Using this result, restate Theorem 3.3.2.

Exercise 3-5. Consider the linear system

ẋ = Ax+Bu, x(0) = x0 ∈ Rn

with x(t) ∈ Rn, A ∈ Rn×n, B ∈ Rn×m and u : [0,∞) → Rm measurable.
Prove Theorem 3.3.2 by using Theorem 3.3.11 and comparing the control-
lable set for u(t) ∈ Ω with the controllable set for u(t) ∈ kΩ, k > 1, where
kΩ = {kv|v ∈ Ω}.)

Exercise 3-6. Let A, B and u be as in the previous exercise. Show that
the system

d2y

dt2
= Ay +Bu, y(0) ∈ Rn, ẏ(0) ∈ Rn

is controllable in R2n if and only if the pair (A,B) is controllable. (Zabczyk
1995)

Exercise 3-7. Consider the system

ẋ = f(x, u), x(0) = x0 ∈ Rn
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with x(t) ∈ Rn, f : Rn × [−1, 1]m → Rn, and the control u : [0,∞) →
[−1, 1]m measurable. Assume that f(x, u) is continuously differentiable on
Rn × [−1, 1]m and f(0, 0) = 0. Show that the controllable set C is open if
and only if 0 ∈ Int C.

Exercise 3-8. Kalman decomposition. Let A ∈ Rn×n and B ∈ Rn×m.
Assume that rankG(A,B) = l. Show that there exists a nonsigular matrix
P such that

PAP−1 =

(
A11 A12

0 A22

)
, PB =

(
B1

0

)
,

withA11 ∈ Rl×l, A22 ∈ R(n−1)×(n−1) andB1 ∈ Rl×m. Prove that rankG(A11, B1) =
l.

Exercise 3-9. Consider the system

ẋ1 = x2 ex1 − x1 − u1
ẋ2 = x1 ex2 − x2 + u2,

with u : [0,∞)→ [−1, 1]2 measurable. Show that C 6= R2 and 0 ∈ Int C.

Exercise 3-10. Let g(ξ1, . . . , ξn+1), with ξ1, . . . , ξn+1 ∈ R, be continuously
differentiable. Assume that g(0, . . . , 0) = 0, ∂g

∂ξn+1
(0, . . . , 0) 6= 0. Show that

the system

dnz

dtn
= g

(
dn−1z

dtn−1
, . . . , z(t), u(t)

)
considered as a system in Rn is locally controllable at 0 ∈ Rn (Zabczyk
1992).

Exercise 3-11. Consider the system ẋ = f(x, u) with x(0) = x0 ∈ Rn,
f : Rn × [−1, 1]m → Rn continuously differentiable and f(0, 0) = 0. Let
A = fx(0, 0) and B = fu(0, 0) and assume that rankG(A,B) = n. Show
that if the solution ϕ(t, x0) ≡ 0 of the free system ẋ = f(x, 0) is globally
asymptotically stable then the controllable set C = Rn.
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Exercise 3-12. Consider the system

ẋ1 = x2
ẋ2 = − sinx1 + u

with unrestricted control u.Take V (x) = 2x21 + x22 + 2x1x2 and use the Lya-
punov function method to show that the origin is asymptotically stable if
the control u is chosen appropriately.

Exercise 3-13. Consider the system

ẋ = Ax+Bu+ c(t), x(0) = x0 ∈ Rn

with A ∈ Rn×n, B ∈ Rn×m, u : [0,∞) → [−1, 1]m measurable and c :
[0,∞) → Rn a given continuous function. Show that the reachable set
K(t, x0) is closed and convex.

Exercise 3-14. Consider the system

ẋ = f(x, u), x(0) = x0 ∈ Rn

with u(t) ∈ [−1, 1]m. Let τ1 > 0 be fixed and show that if

|x(t)T f(x(t), u(t))| ≤ c1‖x(t)‖2 + c2,

with c1 and c2 constant and for t ∈ [0, τ1], then ‖x(t)‖ is uniformly bounded
on [0, τ1].

Exercise 3-15. Prove Corollary 3.3.13

Exercise 3-16. By studying the proof of Theorem 3.1.4 show that, for the
discrete time control system (3.1), rankG = n implies that C = Rn. Is it
necessary to assume that A is invertible?
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Chapter 4

Stability and Stabilization

The previous chapter was concerned entirely with open loop control where,
for given initial condition, the objective is to find a control which ensures that
the state is driven to the origin in finite time. We note that the controllability
matrix G(A,B) plays a big role in this theory. This chapter is concerned
with closed loop control, where the objective is to choose a relationship
between control u and state x which ensures asymptotic stability of the
origin. Although this differs from open loop control we will see that, once
again, the controllability matrix G(A,B) plays a big role in the theory.

In section 4.1 we introduce stabilizability in the context of discrete time
linear systems. The remainder of the chapter concerns the continuous time
setting. We are interested in closed-loop (or feedback) control for the system
(3.7):

ẋ = f(x, u),

x(0) = x0.

Thus we are interested in finding a map u 7→ c(x) which stabilizes this system
in the neighbourhood of a particular state of interest. We will concentrate on
linear maps c. In section 4.2 we study an important link between asymptotic
stability and controllability. Section 4.3 generalizes stabilizability to contin-
uous time linear systems. In section 4.4 we introduce an important link
between stabilizability of linear systems and controllability of systems with
scalar controls. Section 4.5 concerns nonlinear systems and stabilizability.
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4.1 Discrete-Time Linear Systems

As in the previous chapter, we introduce ideas via discrete time problems.
We study the linear control system (3.1) which has the form

xk+1 = Axk +Buk (4.1)

for constant matrices A ∈ Rn×n and B ∈ Rn×m. Our aim is to determine
feedback (closed-loop) controls which stabilize the origin for this iteration.
Thus we introduce K ∈ Rm×n and consider closed-loop linear controls of
the form uk = Kxk. Our aim is to choose the matrix K to achieve desirable
objectives in (4.1). With this linear feedback control (4.1) becomes

xk+1 = (A+BK)xk. (4.2)

We will be particularly interested in the control objective of making the
origin stable. (See Exercise 2-9).

Definition 4.1.1. The system (4.1) is stabilizable if there exists a matrix
K ∈ Rm×n such that the origin for the linear system (4.2) is asymptotically
stable.

Example 4.1.2. As an example of why this might be a useful concept con-
sider a dynamical system of the form

x†k+1 = Ax†k, (4.3)

where x† ∈ Rn and A ∈ Rn×n. Imagine that we do not know the initial
starting point of the system, but that we do observe a sequence {yk}k∈Z+ in
Rm where

yk = Dx†k (4.4)

for some D ∈ Rm×n. Think of the case where D is not invertible, for example
if m < n. To learn the sequence {x†k}k∈N we combine the model (4.3) with
the observed data and consider the control system (4.1) with

uk = yk −Dxk.

This leads to the closed-loop control

xk+1 = Axk +B(yk −Dxk). (4.5)

It is natural to ask whether this recovers the true signal for large enough k.
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Since yk = Dx†k we have from (4.3) that

x†k+1 = Ax†k +B(yk −Dx†k). (4.6)

Defining ek = xk − x†k and subtracting (4.6) from (4.5) we see that

ek+1 = (A−BD)ek. (4.7)

We wish to determine when the sequence ek → 0 as k → ∞. The next
theorem addresses this question.

Theorem 4.1.3. Consider Example 4.1.2. Assume that the control system
(4.1) is stabilizable. Then there is a choice of observation matrix D ∈ Rm×n

such that, for any x0 ∈ Rn, we have that |xk − x†k| → 0 as k →∞.

Proof. Simply take D = −K in the argument preceding the theorem state-
ment.

4.2 Controllability and Stability for Linear Sys-
tems

As a warm-up we consider the stability of the linear system (2.19):

ẋ = Ax, (4.8a)

x(0) = x0. (4.8b)

Although no control appears directly in this stability question we will ascer-
tain conditions which relate it to to the controllability of the system

ż = AT z +DTu. (4.9)

Here Corollary 3.3.4 will play a big role, as it will in subsequent sections.

Theorem 4.2.1. Let A ∈ Rn×n and D ∈ Rm×n and suppose that rankG(AT , DT ) =
n; thus (4.9) is controllable. Then equation (4.8) is asymptotically stable at
0 if and only if there exists positive-definite P such that

PA+ATP = −DTD. (4.10)

97



Proof. Assume first that A is asymptotically stable. Set Q = −DTD and
note that this is negative semi-definite. By applying the same methods as
used to prove Theorem 2.7.17 we deduce that

P =

∫ ∞
0

eA
T tDTDeAtdt

solves the desired equation. It remains to establish that it is positive-definite;
this does not follow from the proof used in Theorem 2.7.17 since Q = −DTD
is not strictly negative-definite. Instead we use controllability of (4.9) to
establish positive-definiteness of P . Since rankG(AT , DT ) = n Corollary

3.3.4 shows that vT eA
T tDT is not identically zero for any v 6= 0. From this

it follows that P is positive-definite:

〈v, Pv〉 =

∫ ∞
0
|DeAtv|2dt > 0.

To prove the converse we suppose that there exists positive definite P solving
(4.10). Let V (x) = 〈x, Px〉 and note that

V̇ (x) = 〈DV (x), Ax〉 = 〈x, (ATP + PA)x〉
= −〈x,DTDx〉
= −〈Dx,Dx〉
= −|Dx|2

≤ 0

proving stability by Theorem 2.7.9(i). It follows that Reλ ≤ 0 for any
eigenvalue λ of A by Theorem 2.7.5. To show asymptotic stability it suffices
to show that Reλ < 0 for all such λ, by Theorem 2.7.3. For contradiction
assume that there is an eigenvalue/eigenvector pair (λ1, v1) with Reλ1 = 0.
We have

v∗1e
AT tPeAtv1 = (eλ1tv1)

∗Peλ1tv1

= v∗1e
−λ1tPeλ1tv1

= v∗1Pv1

demonstrating that

v∗1

(
eA

T tPeAt − P
)
v1 = 0. (4.11)
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Now observe that

d

dt

(
eA

T tPeAt
)

= eA
T t
(
ATP + PA

)
eAt

= −eAT tDTDeAt.

Integrating between 0 and t gives the identity

eA
T tPeAt − P = −

∫ t

0
eA

T sDTDeAsds

so that

v∗1

(
eA

T tPeAt − P
)
v1 = −

∫ t

0

(
DeAsv1

)∗(
DeAsv1

)
ds

= −
∫ t

0
|DeAsv1|2ds 6= 0,

again using Corollary 3.3.4, contradicting (4.11).

4.3 Stabilizability of Linear Systems

Recall Example 1.2.2 which concerns stabilization of the inverted pen-
dulum in a vertical position. That example motivates the contents of this
section. We generalize to consider the linear system

ẋ = Ax+Bu, (4.12a)

x(0) = x0 ∈ Rn (4.12b)

with u ∈ U an unrestricted control. Here x ∈ Rn, u ∈ Rm and A ∈ Rn×n, B ∈
Rn×m. Recall that if the system (4.12) is controllable we say, briefly, (A,B)
is controllable (see Definition 3.2.1).

We study feedback controls with u = Kx, for K ∈ Rm×n, giving rise to the
resulting linear system

ẋ = (A+BK)x, (4.13a)

x(0) = x0 ∈ Rn. (4.13b)

Definition 4.3.1. The system (4.12) is stabilizable if there exists a matrix
K ∈ Rm×n such that the linear system (4.13) is asymptotically stable.
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Theorem 4.3.2. If (A,B) is controllable then it is stabilizable.

We do not prove this theorem at this stage, but we note

Example 4.3.3. We revisit Example 1.2.3. The previous theorem shows
that, if (A,B) is controllable then there exists an observation matrix D ∈
Rp×n such that the equation for e is asymptotically stable. As a consequence,
the control system (1.7) has solution which satisfies |x(t) − x†(t)| → 0 as
t → ∞. Thus the true signal can be recovered from the observation, asymp-
totically for large time, provided the system is controllable and an appropriate
observation matrix is chosen.

4.4 Linear Control Problems With Scalar Control

A key role in control theory is played by control problems of the form

dnz

dtn
+ an−1

dn−1z

dtn−1
+ · · ·+ a1

dz

dt
+ a0z = u.

Here the objective is to use the scalar control u to control the vector y ∈ Rn
given by

y =


z
dz
dt
...

dn−2z
dtn−2

dn−1z
dtn−1


from a given initial configuration to a desired state, which we take as 0. Many
systems of this form arise in applications: the rocket Example 1.2.1 and
the inverted pendulum example 1.2.2 both have this form with n = 2,
the equation being Newton’s second law and the controller being an applied
force.

In addition to this applied motivation we will show that systems of this form
play a useful role in the understanding of the more general linear control
problem. To this end it is useful to observe that the system can be written
in the following canonical form. Define the companion matrix (see Definition
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2.3.10) Ã and vector b̃ by

Ã :=


0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 0 1
−a0 · · · · · · · · · −an−1

 , b̃ :=


0
0
...
0
1

 . (4.14)

Then

ẏ = Ãy + b̃u, (4.15a)

y(0) = y0 ∈ Rn. (4.15b)

Now we consider the general control system

ẋ = Ax+ bu, (4.16a)

x(0) = x0 ∈ Rn, (4.16b)

for A ∈ Rn×n and b ∈ Rn×1. Thus the control is scalar. Our first theorem
shows that, if controllable, then this system can be converted, via the trans-
formation y = Px, to a canonical control problem of the form (4.15). The
proof of the theorem specifies the transformation matrix P .

Theorem 4.4.1. Suppose that the system (4.16) is controllable. Then ∃
nonsingular P ∈ Rn×n such that y = Px solves (4.15) with Ã = PAP−1 and
b̃ = Pb. Furthermore the defining vector a = (a0, · · · , an−1) ∈ Rn is formed
from the coefficients of the charateristic polynomial of A:

det(λI −A) =
n∑
j=0

ajλ
j ,

where an = 1.

Proof. Once P is constructed with the desired matrix properties, application
of it to (4.16) gives

Pẋ = PAx+ Pbu = PAP−1y + Pbu = Ãy + b̃u

and hence that
ẏ = Ãy + b̃u
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as required. Thus it remains to construct P with the desired matrix prop-
erties. Recall that, by Theorem 3.3.2,

G = G(A, b) =
(
b, Ab, · · · , An−1b

)
∈ Rn×n

satisfies rankG = n, and is hence invertible. Now define the vectors v(j) by
the condition that

(G−1)T =
(
v(1), · · · , v(n)

)
so that v(j) is the jth row of G−1. Because G−1G = I, we deduce that

〈v(j), Ak−1b〉 = δjk. (4.17)

Now define P by the identity

P T =
(
v(n), AT v(n), · · · , (AT )n−1v(n)

)
.

We need to show that P is nonsingular and satisfies PAP−1 = Ã, Pb = b̃.
To show that detP 6= 0 suppose for contradiction that ∃γ = (γ1, · · · , γn) ∈
Rn \ {0} such that

n∑
j=1

γj(v
(n))TAj−1 = 0.

Applying the identity above to b on the right and using (4.17) we deduce
that γn = 0. Applying the identity to Ab on the right and again using (4.17)
then gives γn−1 = 0. Proceeding inductively we deduce that γ ≡ 0, giving
the desired contradiction.

By the Cayley-Hamilton Theorem 2.3.7 we have

PA =


(v(n))TA

(v(n))TA2

...

(v(n))TAn

 =


(v(n))TA

(v(n))TA2

...

−
∑n−1

j=0 aj(v
(n))TAj



=


0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 0 1
−a0 · · · · · · · · · −an−1




(v(n))T

(v(n))TA
...

(v(n))TAn−2

(v(n))TAn−1

 = ÃP.
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Finally observe that, by (4.17),

Pb =


(v(n))T b

(v(n))TAb
...

(v(n))TAn−2b

(v(n))TAn−1b

 =


0
0
...
0
1


and the proof is complete.

This result is interesting in its own right, for problems driven by a scalar
control. But the next lemma shows that there is a direct link to general
linear control problems, a link which we then exploit in Theorem 4.4.3.

Lemma 4.4.2. Suppose that (A,B) is controllable. Then ∃F ∈ Rm×n and
b ∈ Rn such that (A+BF, b) is controllable.

Proof. Since the original system (4.12) is controllable ∃u(0) ∈ Rm such that
Bu(0) 6= 0 because otherwise B = 0. We first show that ∃{u(j)}n−1j=0 , all in Rm,

such that the vectors {d(j)}nj=1 now constructed are linearly independent. We
set

d(1) = Bu(0)

d(2) = Ad(1) +Bu(1)

... =
...

d(n) = Ad(n−1) +Bu(n−1).

For contradiction, suppose not: {d(1), · · · , d(k)} are linearly independent for
some k ∈ {1, · · ·n − 1} but for any u ∈ Rm, d(k+1) = Ad(k) + Bu ∈ E =
span {d(1), · · · , d(k)}.
Take u = 0. Then we deduce that Ad(k) ∈ E. But since Ad(k) + Bu ∈ E
for any u ∈ Rm we conclude that Bu ∈ E for any u ∈ Rm. But Ad(j) =
d(j+1) − Bu(j) for j = 1, . . . , k − 1. Since d(j+1) ∈ E by assumption and
Bu ∈ E for any u, we deduce that Ad(j) ∈ E for j = 1, · · · , k − 1. We
already know that Ad(k) ∈ E and so Ad(j) ∈ E for j = 1, · · · , k. Hence we
have AE ⊂ E.

From this we deduce that A`Bu ∈ E for any u ∈ Rm and integer ` ≥ 0. We
now show, using controllability, that E = Rn and hence that k = n. Suppose,
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for contradiction, that E is not equal to Rn. Then ∃x ∈ Rn\{0} such that
x ⊥ A`Bu for any u ∈ Rm and any integer ` ≥ 0. Therefore xTA`B = 0
for any integer ` ≥ 0. But this contradicts controllability by Theorems 3.3.2
and 3.1.2.

Now define b and F as follows: choose arbitrary u(n) ∈ Rm and set

b = d(1) = Bu(0)

Fd(j) = u(j), j = 1, . . . , n.

The latter is a valid definition of F ∈ Rm×n as it defines its action on a set
of n linearly independent vectors in Rn. We then have, for j = 1, . . . , n− 1,

d(j+1) = Ad(j) +Bu(j)

= (A+BF )d(j)

= (A+BF )jd(1)

= (A+BF )jb.

Thus(
b (A+BF )b · · · (A+BF )n−1b

)
=
(
d(1) d(2) · · · d(n)

)
so that rankG(A+BF, b) = n as required.

Before reading the following theorem it is useful to recall Definition 4.3.1 and
Theorem 4.3.2. In particular note that Theorem 4.3.2 exhibits a particular
choice of stabilizing matrix K which makes the origin stable for (4.13). The
following theorem shows that, in fact, there exist an uncountable set of
stabilizing matrices K ∈ Rm×n for a given controllable system since we may
ensure that A + BK has any characteristic polynomial, and hence any set
of eigenvalues, that we choose.

Theorem 4.4.3. Suppose (A,B) is controllable and let β = (β0, · · · , βn−1)T ∈
Rn be arbitrary. Then there exists K ∈ Rm×n such that the characteristic
polynomial of A+BK is determined by β as follows:

det (λI −A−BK) = λn + βn−1λ
n−1 + · · ·+ β0.
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Proof. By Lemma 4.4.2 ∃F ∈ Rm×n, b ∈ Rn such that (A + BF, b) is con-
trollable. Then by Theorem 4.4.1 ∃P with detP 6= 0 and such that

Ã = P (A+BF )P−1 =


0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 0 1
−a0 · · · · · · · · · −an−1


and

b̃ = Pb =


0
0
...
0
1


Recall that, in this construction, the vector a = (a0, · · · , an−1)T is the vector
defining the characteristic polynomial of A + BF ; by Theorem 2.3.11 it is
also the vector defining the characteristic polynomial of Ã. For any g =
(g1, · · · , gn)T ∈ Rn, the n× n matrix b̃gT has its last row equal to gT and is
zero everywhere else. Hence we have

Ã+ b̃gT =


0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 0 1
−a0 + g1 −a1 + g2 · · · · · · −an−1 + gn


with (again using Theorem 2.3.11) the characteristic polynomial

det(λI − Ã− b̃gT ) = λn + (an−1 − gn)λn−1 + · · ·+ (a0 − g1). (4.18)

On the other hand we have

det(λI − Ã− b̃gT ) = det(λPP−1 − P (A+BF )P−1 − PbgTPP−1)

= det
(
P (λI −A−BF − bgTP )P−1

)
= det

(
λI −A−BF − bgTP

)
. (4.19)
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By the proof of Lemma 4.4.2, b = Bu(0). ChooseK = F+u(0)gTP. Equations
(4.18) and (4.19) imply that

det
(
λI −A−BK

)
= λn + (an−1 − gn)λn−1 + · · ·+ (a0 − g1).

Now choose gi = ai−1 − βi−1. The result follows.

4.5 Stabilizability of Nonlinear Systems

We return to the nonlinear control problem (3.7):

ẋ = f(x, u), t > 0

x(0) = x0.

We consider unrestricted controls U . We assume that f(x, u) = 0 for some
x ∈ Rn, u ∈ Rm. Our aim is to determine controls which stabilize the origin.

Theorem 4.5.1. Let Assumptions 3.4.1 hold, Let f be continuously differ-
entiable and set A = Dxf(x, u) and B = Duf(x, u). Assume that the linear
system (4.12) is controllable with this choice of A,B. Then ∃F ∈ Rm×n such
that the closed-loop system

ẋ = f
(
x, u+ F (x− x)

)
(4.20)

is asymptotically stable at x = x.

Proof. Since the linear system (4.12) is controllable, we deduce from The-
orem 4.4.3 that ∃F ∈ Rm×n such that all eigenvalues of Ac := A + BF
have negative real parts. If we can show that Ac is the linearization of the
right-hand side of (4.20) then the result follows by Theorem 2.7.20.

To establish the required linearization result we proceed as follows. Define

fc(x) = f
(
x, u+ F (x− x)

)
.

By the chain rule we have

Dxfc(x) = Dxf
(
x, u+ F (x− x)

)
+Duf

(
x, u+ F (x− x)

)
F
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and setting x = x gives

Dxfc(x) = Dxf(x, u) +Duf(x, u)F

= A+BF

as required.

Exercises

Exercise 4-1. Consider the control system (4.1) with n = 2 and

A =

(
2 0
0 1

2

)
.

Note that if B = 0 the system is not stable. If B = (1, 0)T and B = (0, 1)T

then determine whether the system is stabilizable. Give an explanation for
your findings.

Exercise 4-2. Consider the discrete system (4.3) for a signal {x†k}k∈Z+ ,
with n = 2 and A as in Exercise 4-1. Assume that observations are made
in the form (4.4) with m = 1 and D = (12 ,

1
2)R1×2. Design a control of the

form (4.1), that is find a matrix B ∈ R2×1 such that limk→∞ |xk − x†k| = 0.

Exercise 4-3. Consider system (2.19) with

A =

(
−1 1
0 −1

)
.

By studying the related control problem (4.9) for an appropriate choice of
D, show that (2.19) is asymptotically stable.

Exercise 4-4. Consider the control problem (4.12) in the case where

A =

(
1 0
0 −1

)
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and B = (12 ,
1
2)T . Exhibit an explicit choice of K for which the feedback

control u = Kx gives rise to a stable system, using the proof of Theorem
4.3.2.

Exercise 4-5. By use of Theorem 4.4.3 exhibit an uncountable family of
feedback controls u = Kx which stabilizes the system from Exercise 4-4.

Exercise 4-6. Recall Exercise 3-3. For the choices of b = ei which make
the system controllable, exhibit the transformation (4.14) which renders the
system in canonical form (4.15).

Exercise 4-7. Consider the system ẋ = Ax+Bu with

A =

 0 −1 0
1 0 0
0 0 0

 , B =

 0 0
1 0
0 1

 .

Find a feedback matrix F ∈ R2×3 such that the characteristic polynomial of
A+BF is (λ+ 1)3. Use the following steps:

i) Find vectors u0, u1, u2 ∈ R2 such that the vectors e1 = Bu0, e2 =
Ae1 +Bu1 and e3 = Ae2 +Bu2 are linearly independent.

ii) Find F̃ such that F̃ e1 = u1 and F̃ e2 = u2. Check that the pair
(A+BF̃ ,Bu0) is controllable.

iii) Find a nonsigular matrix P ∈ R3×3 such that the pair (P (A+BF̃ )P−1, PBu0)
is in control canonical form.

iv) Find a vector g ∈ R3 such that the matrix A+BF̃ +Bu0g
TP has the

required characteristic polynomial.

Exercise 4-8. Consider the system

ẋ1 = x1 − x1x22 + x2
ẋ2 = u+ x2

Find a matrix F ∈ R1×2 such that the closed loop control u = Fx makes
the origin asymptotically stable.
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Exercise 4-9. For the system

ẋ1 = x1x2 + x2
ẋ2 = u

Find a matrix F ∈ R1×2 so that the control u = Fx makes the origin
asymptotically stable. Show that the origin is not globally asymptotically
controllable (Sontag 1998).
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Chapter 5

Observing and Filtering

In this chapter we consider questions relating to the combination of observed
data and mathematical model. The objective is to use the observations to
compensate for uncertainty in the initial condition for the model, or uncer-
tainty in the model itself. We study observability, which concerns determi-
nation of the initial condition from the observed data, and filtering which
concerns estimation of the current state of the system, given data up to
that time. We demonstrate links between this theory and the theories of
controllability, developed in previous chapters, and detectability which we
introduce here.

5.1 Discrete Time: Observability and Duality

Discrete time systems will play a central role in this chapter. Consider the
system

xk+1 = Axk +Buk, (5.1a)

yk = Dxk (5.1b)

where xk ∈ Rn, uk ∈ Rm, yk ∈ Rp and A ∈ Rn×n, B ∈ Rn×m and D ∈ Rp×n.

Observability Question: Let J = {0, . . . , J − 1}. Given the observation
{yk}k∈J and the input control function {uk}k∈J can we find {xk}k∈J?
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Recall from (3.3) that the general solution to this problem may be written
as

xk = Akx0 +

k−1∑
j=0

Ak−j−1Buj .

Using this we find that

yk = Dxk

= DAkx0 +D
k−1∑
j=0

Ak−j−1Buj

so that

DAkx0 = yk −D
k−1∑
j=0

Ak−j−1Buj .

The observability question is hence equivalent to asking if x0 is uniquely
determined by this identity, given {yj}j∈J and {uj}j∈J. We make this a
precise definition.

Definition 5.1.1. The system (5.1) is observable on J if, given {yj}j∈J and
{uj}j∈J, the initial condition x0 is determined uniquely.

Example 5.1.2. Consider the system xk+1 = xk + uk where xk, uk ∈ R2

and let yk = 〈e, xk〉 where e = (1, 0)T . It is clear that the observation
sequence {yk} contains no information about the second component of {xk}
and hence that the system is not observable. It is, however, controllable: in
the abstract notation of (3.1) we have m = n = 2 and A = B = I. Hence the
controllability matrix has rank 2 and Theorem 3.1.4 shows that the system
is controllable.

The previous example shows that controllability and observability are not
the same. However, they are linked through a duality principle which we
now explain.

Theorem 5.1.3. Suppose A is invertible. The system (5.1) is observable on
J with J = n if and only if the corresponding dual system

zk+1 = AT zk +DT vk, (5.2a)

wk = BT zk, (5.2b)

with unrestricted control vk, is controllable.
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Proof. If Suppose that (5.1) is not observable on J with J = n. Then for
given {yj}j∈J and {uj}j∈J there exists sequences x, η with x 6= η such that

xk+1 = Axk +Buk,

ηk+1 = Aηk +Buk,

and
yk = Dxk = Dηk, k = 0, . . . , n− 1. (5.3)

Let ξk = xk − ηk and ξ0 = x0 − η0 6= 0. Then

ξk+1 = Aξk,

and so
ξk = Akξ0.

By (5.3) we deduce that

ξT0 (AT )kDT = 0, k = 0, . . . , n− 1

for some ξ0 6= 0. By Theorem 3.1.2(i) we deduce that rankG(AT , DT ) < n
and so (5.2) is not controllable. Thus controllability of (5.2) implies observ-
ability of (5.1) on J with J = n.

Only if. Suppose now that (5.2) is not controllable. Then

rankG(AT , DT ) = rank
(
DT , ATDT , . . . , (AT )n−1DT

)
< n.

By Theorem 3.1.2(i) we deduce that ∃ξ ∈ Rn\{0}, orthogonal to all columns
of G(AT , DT ) and so ξT (AT )kDT = 0 for k = 0, . . . , n− 1. Hence

DAkξ = 0, k = 0, . . . , n− 1.

Now consider the system

xk+1 = Axk +Buk, x0 = λξ,

for any λ ∈ R and let uk ≡ 0. Then

yk = Dxk = DAkx0 = λDAkξ = 0

for all k ∈ J with J = n. Since this is true for all λ it demonstrates that the
system (5.1) is not observable on J with J = n. Hence observability of (5.1)
on J with J = n implies controllability of (5.2).
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Example 5.1.4. We revisit Example 5.1.2. The dual system (5.2) has ma-
trix A = I and D = (1, 0). Clearly (AT )nDT = DT for all n ∈ N and hence
rankG(AT , DT ) = 1 < 2. Hence the dual system is not controllable and the
original system is not observable on J with J = n.

Remarks 5.1.5. Note that observability of (5.1) is, by Theorem 5.1.3, de-
termined entirely by the properties of the matrix pair (A,D). For this reason
we refer simply to the pair (A,D) being observable.

5.2 Continuous Time: Observability and Duality

Consider the system

ẋ = Ax+Bu, x(0) = x0 (5.4a)

y = Dx (5.4b)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp and A ∈ Rn×n, B ∈ Rn×m and
D ∈ Rp×n.

Observability Question: Given the observation y(·) and the input control
function u(·), can we find {x(t)}t>0?

Using (2.10) we have

y(t) = Dx(t)

= DeAtx0 +D

∫ t

0
eA(t−s)Bu(s)ds

so that

DeAtx0 = y(t)−D
∫ t

0
eA(t−s)Bu(s)ds. (5.5)

The observability question is hence equivalent to asking if there exists a
unique x0 determined by (5.5), given y(·) and u(·).

Definition 5.2.1. The system (5.4) is observable if, given y(·) and u(·) on
any time interval [0, t), with t > 0, the initial condition x0 is determined
uniquely.
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Example 5.2.2. Consider the system

ẋ1 = x1 + u1,

ẋ2 = x2 + u2,

y = x1.

Since x1 and x2 are independent it is clear that the observation y contains
no information about x2. Hence the system is not observable. It is, however,
controllable: in the abstract notation of (3.9) we have m = n = 2 and
A = B = I. Hence the controllability matrix has rank 2 and Theorem 3.3.2
shows that the system is controllable.

It is clear from equation (5.5) that the system is observable when p = n
and D is invertible. However if p < n then observability turns out to be
equivalent to controllability for a related dual problem. The situation is
very similar to that arising in discrete time in section 5.1.

Theorem 5.2.3. The system (5.4) is observable if and only if the corre-
sponding dual system

ż = AT z +DT v, z(0) = z0 (5.6a)

w = BT z (5.6b)

with unrestricted control v is controllable.

Proof. If Suppose that (5.4) is not observable. Then for fixed y(·) and u(·)
there exists x0 6= η0 such that

ẋ = Ax+Bu, x(0) = x0

η̇ = Aη +Bu, η(0) = η0

and

y(t) = Dx(t) = Dη(t). (5.7)

Let ξ = x− η and ξ0 = x0 − η0. Then ξ satisfies

ξ̇ = Aξ, ξ(0) = ξ0

and so

ξ(t) = eAtξ0.
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Hence, by (5.7),
Dξ(t) = DeAtξ0 = 0.

Setting t = 0 we get Dξ0 = 0. Differentiating k times and setting t = 0 gives
DAkξ0 = 0 so that ξT0 (AT )kDT = 0 and therefore

ξT0 (AT )kDT = 0, k = 0, . . . , n− 1.

By Theorem 3.1.2(i) we deduce that rankG(AT , DT ) < n and so (5.6) is not
controllable. Thus controllability of (5.6) implies observability of (5.4).

Only if Suppose now that (5.6) is not controllable. Then

rankG(AT , DT ) = rank
(
DT , ATDT , . . . , (AT )n−1DT

)
< n.

By Theorem 3.1.2(i) we deduce that ∃ξ ∈ Rn\{0}, orthogonal to all columns
of G(AT , DT ) and so ξT (AT )kDT = 0 for k = 0, . . . , n− 1. Hence

DAkξ = 0, k = 0, . . . , n− 1.

Consider
ẋ(t) = Ax(t) +Bu(t), x(0) = λξ,

for any λ ∈ R and and let u(·) = 0. We will show that y(t) = Dx(t) = 0 for
all t ≥ 0; since this is true for all λ it demonstrates that the system (5.4) is
not observable. By the Cayley-Hamilton Theorem 2.3.7

An = −an−1An−1 − · · · − a0I

for ai ∈ R coefficients of the characteristic polynomial and i = 0, · · · , n− 1.
Thus DAnξ = 0 and, similarly,

DAn+1ξ = DA
(
−an−1An−1 − · · · − a0I

)
ξ = 0.

Proceeding inductively we deduce that DAkξ = 0 for all k ∈ Z+. Since

x(t) = λetAξ = λ

∞∑
k=0

tkAk

k!
ξ

we have

Dx(t) = λ

∞∑
k=0

tkDAk

k!
ξ = 0

for every λ ∈ R and so (5.4) is not observable (alternatively, one can apply
Corollary 3.3.4 to get the same result). Hence observability of (5.4) implies
controllability of (5.6).
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Example 5.2.4. We revisit Example 5.2.2. The dual system (5.6) has ma-
trix A = I and D = (1, 0). Clearly (AT )nDT = DT for all n ∈ N and hence
rankG(AT , DT ) = 1 < 2. Hence the system is not observable.

Remarks 5.2.5. • Note that observability of (5.4) is, by Theorem 5.2.3,
determined entirely by the properties of the matrix pair (A,D). For this
reason we refer simply to the pair (A,D) being observable.

• Consider the question of determining the asymptotic stability of the
origin for (2.19) and note that this is equivalent to determining asymp-
totic stability of the equation

ẋ = ATx.

Recall the system (5.4). Together Theorems 5.2.3 and Theorem 4.2.1
state that if (5.4) is observable then the equation (2.19) for x is asymp-
totically stable if and only if there is a positive-definite P satisfying

PA+ATP = −DTD.

Consider the linear system

ẋ = (A+ LD)x, (5.8a)

x(0) = x0 ∈ Rn. (5.8b)

Definition 5.2.6. The system (5.4) is detectable if there exists matrix L ∈
Rn×p such that the linear system (5.8) is asymptotically stable.

Theorem 5.2.7. If (A,D) is observable then it is detectable.

Proof. By Theorem 5.2.3, the matrix pair (A,D) is observable if and only if
the matrix pair (AT , DT ) is controllable. By Theorem 4.3.2 we deduce that
if (A,D) is observable then (AT , DT ) is stabilizable. There exists K ∈ Rp×n
such that

ẋ = (AT +DTK)x,

x(0) = x0 ∈ Rn.

is asymptotically stable. Hence the system (5.8) is asymptotically stable
with L = KT .

Example 5.2.8. Recall Example 1.2.3 concerning signal processing. The-
orem 5.2.7 demonstrates that, provided (A,D) is observable, there is a choice
of control matrix B such that |x(t)− x†(t)| → 0 as t→∞.
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5.3 Discrete Time: Kalman Filter

Observability is concerned with determining the initial state of a dynamical
system, from observations at later times. Another natural question is to
determine the current state, from observations up to that time. This is an
idea that we introduced in Example 4.1.2 of section 4.1 where we showed how
an ad hoc combination of model and observed data could be used to create
a control system which converges to the true signal, if the control system is
stabilizable and an appropriate observation is made. In the notation that
we will use in this section that ad hoc control rule system can be written as

mk+1 = Amk +B(yk −Dmk).

In this section we derive a similar control rule of the form

mk+1 = Amk +Kk+1(yk+1 −DAmk), (5.9)

by using ideas from probability to design the control. We study a problem
analogous to that in section 5.1, in the presence of observational noise. Under
specific assumptions on the form of the noise we show how to derive the
control rule (5.9).

To this end we consider the system

xk+1 = Axk, k ∈ Z+ (5.10a)

yk+1 = Dxk+1 + ηk+1, k ∈ Z+ (5.10b)

where x ∈ Rn, y ∈ Rp, η ∈ Rp and A ∈ Rn×n, D ∈ Rp×n. We assume
that we observe {yk}k∈N and that the ηk represent noise that enters the
observation of Dxk. As in section 5.1 and Example 4.1.2 we assume that x0
is not known, and that the objective is to determine the state of the system
from the observations.

The presence of noise in the observations introduces novel aspects into this
problem; in particular, it allows us to exploit the structure of this noise to
make rational decisions about how to estimate the state. We will work in
the setting where it is assumed that the ηk are an i.i.d. sequence of random
variables with distribution η1 ∼ N(0,Γ). We will also assume that, although
x0 is not known precisely, it is drawn from a distribution N(m0, C0) and
is independent of the noise sequence {ηk}. These statistical assumptions,
together with the linearity of the problem, will enable us to work entirely in
a Gaussian framework.
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In this setting the system states {xj}j≥0 and the observations {yj}j≥1 are all
random variables. We let Yk = {yj}kj=1 ∈ Rkp and Xk = {xj}kj=0 ∈ R(k+1)n.
Our objective is to find the distribution of the random variable xk|Yk. We
will first show that it is Gaussian with distribution N(mk, Ck) and we will
then determine equations for the mean mk and covariance Ck. This will
constitute a control system in which the update mk 7→ mk+1 provides the
optimal combination of model and data required to estimate the state.

Lemma 5.3.1. The random variables (Xk, Yk), Xk|Yk and xk|Yk are all
Gaussian.

Proof. We have that x0 is Gaussian and, by (5.10a), Xk is a linear trans-
formation of x0. Hence, by Theorem 2.8.9, Xk is Gaussian. The random
variable Yk|Xk is also Gaussian; in fact it is the independent product of the
Gaussians N(Dxj ,Γ) for j = 1, . . . , k (see Exercise 2-20). By Theorem 2.8.6
with n 7→ n(k+1) and m 7→ pk we deduce that (Xk, Yk) and Xk|Yk are both
Gaussian. Finally note that xk|Yk is simply the marginal distribution of the
random variable Xk|Yk with respect to xk and is itself Gaussian by virtue of
Theorem 2.8.7.

Two theorems now follow in which we use Example 2.8.12, and formulae
(2.31) and (2.32) respectively, to derive the Kalman filter. In the first theo-
rem we assume that A is invertible and that C0 and Γ are positive definite.
The more general case, in which we assume only that Γ is positive-definite,
is addressed afterwards, in the second theorem. Under this invertibility as-
sumption on A we have the following.

Theorem 5.3.2. Assume that x0 ∼ N(m0, C0) and that the observational
noise sequence {ηk}k∈N is independent of x0 and is i.i.d. with η1 ∼ N(0,Γ).
Assume further that A is invertible and that C0 and Γ are positive definite.
Then xk|Yk ∼ N(mk, Ck) where Ck is positive definite and

C−1k+1 = (ACkA
T )−1 +DTΓ−1D (5.11a)

C−1k+1mk+1 = (ACkA
T )−1Amk +DTΓ−1yk+1. (5.11b)

Proof. Assume, for the purposes of induction, that xk|Yk ∼ N(mk, Ck), with
Ck positive-definite, interpreting x0|Y0 as simply x0 (since Y0 is not defined).
We note that the matrix Ck+1 is well-defined by (5.11a). This is because
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that formula gives, for x ∈ Rn\{0},

〈x,C−1k+1x〉 = 〈x, (A−1)TC−1k A−1x〉+ 〈x,DTΓ−1Dx〉
= 〈A−1x,C−1k A−1x〉+ 〈Dx,Γ−1Dx〉
≥ 〈A−1x,C−1k A−1x〉
> 0.

In the penultimate line we have used the fact that Γ and hence Γ−1 is positive
definite, but note that D may not be invertible, hence the inequality is not
strict; and in the last line we have used that Ck, and hence C−1k , is positive-
definite, and A is invertible so that the inequality is strict. Thus C−1k+1 is
positive-definite symmetric and hence so is Ck+1.

The derivation proceeds in two steps. In the first (i) we use the linear map
xk+1 = Axk to find xk+1|Yk from xk|Yk; in the second (ii) we use Bayes’
Theorem to find xk+1|Yk+1 from xk+1|Yk. For (i) note that by Theorem 2.8.9
and the inductive hypothesis we know that xk+1|Yk ∼ N(Amk, ACkA

T ). For
(ii) note that Bayes’ Theorem in the form of Remarks 2.8.4 gives

P(xk+1|Yk+1) = P(xk+1|{Yk, yk+1})
∝ P(yk+1|{Yk, xk+1})P(xk+1|Yk)
= P(yk+1|xk+1)P(xk+1|Yk).

The last step uses the fact that yk+1|{Yk, xk+1} = yk+1|xk+1 because of the
independence of the ηk.

Now yk+1|xk+1 ∼ N(Dxk+1,Γ) and xk+1|Yk ∼ N(Amk, ACkA
T ). Thus

Bayes’ theorem shows that xk+1|Yk+1 is a Gaussian random variable with
pdf ρ(x) ∝ exp

(
−J(x)

)
where

J(x) =
1

2

∣∣∣Γ− 1
2
(
yk+1 −Dx

)∣∣∣2 +
1

2

∣∣∣(ACkAT )−
1
2
(
x−Amk

)∣∣∣2. (5.12)

We can complete the square and write

J(x) =
1

2

∣∣∣C− 1
2

k+1(x−mk+1

)2∣∣∣2.
Details are not repated as the derivation is simply an application of Theorem
2.8.6(ii) with xk+1 7→ x, yk+1 7→ y, m0 = Amk, C0 = ACkA

T , H = D and Γ
as is. The desired formulae are also displayed in Example 2.8.12, formulae
(2.31).
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The form (5.11) for the Kalman filter, which works with inverse of the co-
variance operator, is the simplest form in which to derive the filter, and is
also useful for analysis. However, for the purposes of implementation, the
following form is useful. It is also valid without the restrictive assumptions
on invertibility of A and C0 that we introduced for the preceding derivation.

We define the predicted mean m̂k+1 and predicted covariance Ĉk+1 by

m̂k+1 = Amk (5.13a)

Ĉk+1 = ACkA
T . (5.13b)

We define the innovation by

dk+1 = yk+1 −Dm̂k+1, (5.14)

the innovation covariance by

Sk+1 = DĈk+1D
T + Γ (5.15)

and the Kalman gain by

Kk+1 = Ĉk+1D
TS−1k+1. (5.16)

Theorem 5.3.3. Assume that x0 ∼ N(m0, C0) and that the observational
noise sequence {ηk}k∈N is independent of x0 and is i.i.d. with η1 ∼ N(0,Γ).
Assume further that Γ is positive definite. Then xk|Yk ∼ N(mk, Ck) where

Ck+1 = (I −Kk+1D)Ĉk+1 (5.17a)

mk+1 = m̂k+1 +Kk+1dk+1. (5.17b)

Proof. The derivation proceeds using Bayes’ Theorem, as in the proof of
Theorem 5.3.2, leading to formula (5.12) for the negative logarithm of the
pdf. From that expression, applying the formulae (2.32) for conditioned
Gaussians from Example 2.8.12, we find that

Ck+1 = Ĉk+1 − Ĉk+1D
TS−1k+1DĈk+1

mk+1 = m̂k+1 + Ĉk+1D
TS−1k+1dk+1.

Substituting the definition (5.16) of the Kalman gain matrix gives the desired
form of the Kalman update equations.
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Remarks 5.3.4. Note that the update formula (5.17b) may be written as

mk+1 = Amk +Kk+1(yk+1 −DAmk).

As such it is structurally very similar to the ad hoc control rule (4.5) that we
wrote down in Example 4.1.2 in order to estimate the state of the system by
combining the observations and model. In the notation of this section that
ad hoc control rule may be written as

mk+1 = Amk +B(yk −Dmk).

However the Kalman update formula has two important differences: (i) the
fixed control matrix B has been replaced by a time-dependent control matrix
Kk+1: the Kalman gain; (ii) the difference between data and model is now
evaluated at time k+ 1 and not at time k as the innovation is yk+1−DAmk

rather than yk −Dmk. The first difference is particularly striking: the addi-
tional Gaussian structure imposed on the noise enables us to design a choice
of time-dependent control matrix from first principles.

5.4 Discrete Time: Kalman Smoother

In Kalman filtering we seek the distribution of xk|Yk so that our estimate of
the solution xk at time k depends only on data upto time k. The Kalman
smoother seeks the distribution of XJ |YJ so that the estimate of the solution
xk at any time k ∈ {0, · · · , J} depends on all the data {yj}j=1,··· ,J .

Theorem 5.4.1. The random variable XJ |YJ is Gaussian. If the (Gaus-
sian) marginal distribution x0|YJ is denoted N(m′, C ′) then the (Gaussian)
marginal distributions xk|YJ = N

(
Akm′, AkC ′(Ak)T

)
.

Proof. The fact that XJ |YJ is Gaussian follows from Lemma 5.3.1. Con-
sequently all the marginals xk|YJ are Gaussian by Theorem 2.8.7. Since
xk = Akx0 we see that xk|YJ is simply the image of x0|YJ under the linear
map Ak. Thus the desired result concerning the expression for the distribu-
tions of xk|YJ in terms of x0|YJ follows from Theorem 2.8.9 with a = 0 and
A→ Ak.
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Theorem 5.4.2. The Gaussian random variable x0|YJ ∼ N(m′, C ′) where

(C ′)−1 = C−10 +
J∑
j=1

(AT )jDTΓ−1DAj

(C ′)−1m′ = C−10 m0 +

J∑
j=1

(AT )jDTΓ−1yj .

Proof. We have x0 ∼ N(m0, C0). By Remarks 2.8.2, the density of this
random variable is thus proportional to

exp
(
−1

2
|C−

1
2

0 (x0 −m0)|2
)
. (5.18)

Since xj = Ajx0 it follows that yj |x0 ∼ N(DAjx0,Γ) with density propor-
tional to

exp
(
−1

2
|Γ−

1
2 (yj −DAjx0)|2

)
.

Furthermore, the random variables yj |x0 are independent, because the ηj
are i.i.d. Thus, by (2.30), the random variable YJ |x0 has pdf which is the
product of the pdfs for yj |x0 and j = 1, · · · , J and is hence proportional to

exp
(
−

J∑
j=1

1

2
|Γ−

1
2 (yj −DAjx0)|2

)
. (5.19)

Combining (5.18) and (5.19) according to the Bayes’ Theorem 2.8.3 (with
x→ x0 and y → YJ) we see that x0|YJ has pdf proportional to exp

(
−J(x)

)
where

J(x) =
1

2
|C−

1
2

0 (x−m0)|2 +
1

2

J∑
j=1

|Γ−
1
2 (yj −DAjx)|2

=
1

2
〈(x−m0),C−10 (x−m0)〉+

1

2

J∑
j=1

〈(yj −DAjx),Γ−1(yj −DAjx)〉.

Again we have used x as the argument of the pdf for x0|YJ , for economy of
notation. Writing

J(x) =
1

2
〈(x−m′), (C ′)−1(x−m′)〉+ k
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where k is independent of x we find, by matching the quadratic and linear
terms in x respectively, the covariance and mean as given in the theorem
statement.

Theorem 5.4.3. The means m′k of xk|YJ , k = 0, · · · , J , satisfy the following
equations for j = 1, · · · , J :

m′j = Am′j−1, m′0 = m0 + C0A
Tλ1

λj = ATλj+1 +DTΓ−1(yj −Dm′j), λJ+1 = 0.

Proof. The proof of Theorem 5.4.2 shows that m′0 is the minimizer of

J(x) :=
1

2
|C−

1
2

0 (x−m0)|2 +
1

2

J∑
j=1

|Γ−
1
2 (yj −DAjx)|2.

Putting xj = Ajx0 and X =
(
(x0)

T , · · · , (xJ)T
)T

we see that m′0 may be

identified as the first component of the minimizerM =
(
(m′0)

T , · · · , (m′J)T
)T

of

I(X) =
1

2
|C−

1
2

0 (x0 −m0)|2 +
1

2

J∑
j=1

|Γ−
1
2 (yj −Dxj)|2

with respect to X satisfying the linear constraints

xj+1 = Axj , j = 0, · · · , J − 1.

Under these constraints the minimizer will satisfy

m′j+1 = Am′j

as required.

By using Lagrange multipliers we deduce that the minimizer of this problem
coincides with critical points of the functional

L(X,λ) = I(X) +

J∑
j=1

〈λj , xj −Axj−1〉

where λ =
(
λT1 , · · · , λTJ

)T
and, for notational convenience in what follows

below, we define λJ+1 = 0.
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Taking the derivative of L with respect to λj for j = 1, · · · , J and with
respect to x0, and setting xj = m′j gives

m′j = Am′j−1, m′0 = m0 + C0A
Tλ1.

Taking the derivative of L with respect to xj for j = 1, · · · , J , using λJ+1 = 0
and setting xj = m′j gives

λj = ATλj+1 +DTΓ−1(yj −Dm′j), λJ+1 = 0.

Remarks 5.4.4. Recall that, because xk is just the image of x0 under the
linear transformation, x 7→ Akx it follows from Theorem 5.4.1 that xk|YJ
is Gaussian with mean m′j = Ajm′ and covariance C ′j = AjC ′(AT )j with
m′, C ′ as given in Theorem 5.4.2. It is the case, of course, that m′0 given
in Theorem 5.4.3 must be equal to m′ from Theorem 5.4.2. We verify this
by means of a direct calculation. From the iteration for the λj in Theorem
5.4.3 we have that

λ1 =

J∑
j=1

(AT )j−1DTΓ−1
(
yj −DAjm′0

)
so that

ATλ1 =
J∑
j=1

(AT )jDTΓ−1
(
yj −DAjm′0

)
.

Using the identity m′0 = m0 + C0A
Tλ1 we find that

(C0)
−1m′0 = C−10 m0 +

J∑
j=1

(AT )jDTΓ−1
(
yj −DAjm′0

)
.

Collecting terms involving m′0, and using the definition of C ′ from Theorem
5.4.2, we find that

(C ′)−1m′0 = C−10 m0 +

J∑
j=1

(AT )jDTΓ−1yj .

This shows that m′0 = m′ where m′ is as given in Theorem 5.4.2.
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Exercises

Exercise 5-1. Is the sytem (5.1) with

A =

 0 −1 0
1 0 0
0 0 0

 , D =

(
0 1 0
0 0 1

)
observable on J with J = 3?

Exercise 5-2. Derive the equations for the mean mk and variance ck of the
Kalman filter when applied to the system

xk+1 = axk, x0 ∼ N(m0, c0) (5.20)

yk = xk + ηk (5.21)

where a 6= 0, xk, yk, ηk ∈ R and η1 ∼ N(0, σ2). Show that

c−1k = a−2kc−10 +
(k−1∑
j=0

a−2j
)
σ−2.

Hence deduce that:

• if |a| > 1 then ck → σ2(|a|2 − 1)/|a|2 as k →∞;

• if |a| < 1 then a2kc−1k → c−10 + σ−2

a−2−1 ;

• if |a| = 1 then k−1c−1k → σ−2.

Hence prove that, for all values of a and all c0, there is K ∈ N such that
ck < σ2 for all k > K and that, furthermore, if |a| ≤ 1, ck → 0 as k →∞.

Exercise 5-3. Consider the equation for the mean update in the Kalman
filter in the setting of Exercise 5-2. Now assume that the data yk is derived
from a deterministic true signal x†k generated as follows:

x†k+1 = ax†k,

yk = x†k + ηk.
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Show that the error ek between the mean mk and the true signal x†k satisfies
the equation

c−1k+1ek+1 = a−1c−1k ek + σ−2ηk+1.

Show that, if |a| 6= 1, then there is K ∈ N such that

|ek+1| ≤ λ|ek|+ |ηk+1|, k ≥ K.

where λ = |a| if |a| < 1 and λ = |a|−1 if |a| > 1.

Using the fact that ηk is an i.i.d. sequence of mean zero Gaussians with
variance σ2, prove that

lim sup
k→∞

E|ek| ≤ σ(1− |λ|)−1.

Exercise 5-4. Use Exercise 5-3 to show that dk := akc−1k ek satisfies

dk+1 = dk + σ−2ak+1ηk+1

and hence that
E|dk+1|2 = E|dk|2 + σ−2a2(k+1).

Deduce the following:

• if |a| > 1 then E|ek|2 → σ2(|a|2 − 1)/|a|2 as k →∞;

• if |a| ≤ 1 then E|ek|2 → 0 as k →∞.

Exercise 5-5. Is the sytem (5.4) with

A =

 0 −1 0
1 0 0
0 0 1

 , D =
(

1 0 0
)

observable? What about the sytem (5.4) with

A =

 0 −1 0
1 0 0
0 1 0

 , D =
(

0 1 0
)
?

and sytem (5.4) with

A =

 0 −1 0
1 0 0
0 0 1

 , D =
(

0 1 0
)
?
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Exercise 5-6. Consider the linear system

xk+1 = Axk +Buk, x0 = x.

where xk ∈ Rn, uk ∈ Rm, A ∈ Rn×n and B ∈ Rn×m. Assume that we wish
to find the control which ensures xK = 0 and minimizes

J(u) =
1

2

K−1∑
k=0

|uk|2.

Use Lagrange mutipliers to show that the optimal solution is given by control
{uj} and state {xj} satisfying

uj = BTλj , j = 0, . . . ,K − 1,

xj+1 = Axj +Buj , j = 0, . . . ,K − 1,

λj−1 = ATλj , j = 1, . . . ,K − 1

and x0 = x, xK = 0.
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Chapter 6

Optimal Control

This chapter uses the calculus of variations to study two problems related
to optimal control in the context of unconstrained linear control problems.
Ideas from section 2.9, concerning the calculus of variations, play a central
role. The chapter contains two sections. Section 6.1 concerns the optimal
choice of control which achieves the objective x(T ) = 0, for some fixed T > 0,
with minimal L2

(
[0, T ];Rm

)
norm. Section 6.2 concerns the optimal choice

of control which, for some fixed T > 0, minimizes the sum of the square of the
L2
(
[0, T ];Rm

)
norm of the control and the square of the L2

(
[0, T ];Rp

)
norm

of the data/model mismatch y−Dx; thus we attempt to find control which
leads to output which matches the data, whilst simultaneously ensuring that
the control is not too big. A discrete analogue of the continuous time analysis
of section 6.1 may be found in Exercise 5-6 and the reader is advised to
solve this problem before reading section 6.1. Section 5.4 contains a discrete
analysis similar to the continuous time analysis of section 6.2. However in the
discrete setting we attempted to find the optimal fit to the data by varying
the initial condition; in 6.2 we match the data by choosing an appropriate
control. Exercise 6-2 studies the problem of choosing the initial condition to
best match the data.
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6.1 Minimum Energy Controls

In Chapter 3 we consider the unrestricted control problem

ẋ = Ax+Bu, t > 0 (6.1a)

x(0) = x0. (6.1b)

In Lemma 3.3.3 we showed that, provided the controllability matrix G(A,B)
has full rank, then all initial conditions can be controlled to the origin in finite
time T > 0. But we did not exhibit any selection mechanism for choosing the
best control. In this section we seek to do so by finding the control which,
for given fixed T > 0, drives the solution of (6.1) to satisfy x(T ) = 0 and
which minimizes

J(u) =
1

2
‖u‖2 (6.2)

where the norm is in Um = L2
(
[0, T ];Rm

)
.

We aim to minimize J over all controls which achieve the objective x(T ) = 0.
First we view this end point condition as a constraint on u and define

Uad = {u ∈ Um|x(T ) = 0}.

Lemma 3.3.9 shows that the set Uad is convex. Using this fact we have the
following:

Theorem 6.1.1. Assume that (A,B) is controllable. Fix any T > 0. Then
there is a unique minimizer u ∈ Uad of J such that J(u) ≤ J(u) for all
u ∈ Uad.

Proof. We use Theorem 2.9.1 which requires that Uad is closed and convex.
We know that Uad is convex and hence now establish that it is closed. If
{uk} is a sequence of controls in Uad with limit u in Um then (3.13) shows
that ∫ T

0
eA(T−s)Buk(s)ds = −eATx0.

Define the linear operator L : Um → Rn by

(
Lφ
)
(s) :=

∫ T

0
eA(T−s)Bφ(s)ds.
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The operator L is bounded from Um into Rn since eA(T−s)B is bounded in
L∞
(
[0, T ];Rn×m

)
. Hence we deduce that∫ T

0
eA(T−s)Bu(s)ds = lim

k→∞

∫ T

0
eA(T−s)Buk(s)ds = −eATx0.

Thus u ∈ Uad and so the set Uad is closed as well as convex. A feasible point
in Uad exists since the problem is controllable, by Lemma 3.3.3. Theorem
2.9.1 gives the desired result.

Now we would like to characterize the minimizing control u, and the resulting
minimizing state x. To this end, we employ Theorems 2.9.3 and 2.9.4. Let
X = H1

(
[0, T ];Rn

)
, Un = L2

(
[0, T ];Rn

)
and Z = Un × Rn. Recall A : X→

Z defined by (2.14) and that Theorem 2.5.6 shows that this operator has
bounded inverse. We also define B : Um → Z by

Bu =

(
−Bu

0

)
. (6.3)

Then we have the problem of minimizing J given by (6.2) subject to the
constraints

Ax+ Bu = g :=

(
0
x0

)
(6.4)

and

`(x) := x(T ) = 0. (6.5)

We define

Xad = {x ∈ X|x(T ) = 0} (6.6)

and

Fad =
{

(x, u) ∈ Xad × Um|Ax+ Bu = g
}
.

Note that we have now put the constraint x(T ) on the set X, rather than
directly on Um. Note also that Xad is a closed and convex set in X and that
Um is convex (see Exercise 6-1). We have the following result.

Theorem 6.1.2. Let the assumptions of Theorem 6.1.1 hold. The problem
of minimizing J given by (6.2) over (x, u) ∈ Fad has a unique solution.
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Furthermore if control u and state x are given via solution of the boundary
value problem

dx

dt
= Ax+Bu, x(0) = x0 (6.7a)

dλ

dt
= −ATλ, x(T ) = 0, (6.7b)

and the identity u = BTλ then this pair solves the variational equations
(2.36) for appropriate choice of the Lagrange multipliers p, ρ.

Proof. A feasible point exists in Fad since the problem is controllable, by
Lemma 3.3.3. The existence of a unique solution follows from Theorem
2.9.3 since Xad and Um are closed and convex and since A−1 is bounded.
To characterize the solution we apply Theorem 2.9.4, showing that (x, u)
satisfies the equations (2.36) which we repeat here for convenience:

〈Ax+ Bu− g, δp〉 = 0 ∀δp ∈ Z

〈DxJ(x, u) +A∗p+ `∗(ρ), δx〉 = 0 ∀δx ∈ X

〈DuJ(x, u) + B∗p, δu〉 = 0 ∀δu ∈ U

〈`(x)− f, δρ〉 = 0 ∀δρ ∈ Rr.

The differential equation for x follows from (2.36a). We write p = (λ, q) ∈ Z
and assume that λ is differentiable. Recall that here `(x) = x(T ) and that
f = 0 so that `(x) = f imposes the constraint that creates Xad. Since J is
independent of x, equation (2.36b) gives

0 = 〈A∗p+ `∗(ρ), δx〉
= 〈p,Aδx〉+ 〈ρ, `(δx)〉

=

∫ T

0

〈
λ(t),

d

dt
δx(t)−Aδx(t)

〉
dt+ 〈q, δx(0)〉+ 〈ρ, δx(T )〉

= −
∫ T

0

〈 d
dt
λ(t) +ATλ(t), δx(t)

〉
dt+ 〈ρ+ λ(T ), δx(T )〉

+ 〈q − λ(0), δx(0)〉.

From this we deduce that if the Lagrange multipliers are related by q = λ(0)
and ρ = −λ(T ) then we obtain the following weak form of the equation for
λ(t): ∫ T

0

〈 d
dt
λ(t) +ATλ(t), δx(t)

〉
dt = 0 ∀δx ∈ X.
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This is satisfied if λ solves the strong form of the equation given in the
theorem statement.

Note that

〈B∗p, δu〉 = 〈p,Bδu〉
= −〈λ,Bδu〉
= −〈BTλ, δu〉.

Thus

〈B∗p, δu〉 = −〈BTλ, δu〉. (6.8)

Hence equation (2.36c) is equivalent to

〈u−BTλ, δu〉 = 0, ∀δu ∈ Um

which is satisfied under the assumptions of the theorem. Finally note that
(2.36d) is satisfied when we impose the constraint that x(T ) = 0.

Using equations (6.7) we can characterize the solution of this optimal control
problem rather explicitly. We define

Q(T ) =

∫ T

0
eAsBBT eA

T sds

and note Corollary 3.3.4 shows that this matrix is invertible.

Theorem 6.1.3. Under the assumptions of Theorem 6.1.1, the optimal con-
trol u is given by

u(t) = −BT eA
T (T−t)Q(T )−1eATx0.

Proof. We note, from (6.7b) that λ(t) = e−A
T tλ(0) so that u(t) = BT e−A

T tλ(0).
Thus the optimal state solves

dx

dt
= Ax+BBT

(
e−A

T tλ(0)
)
, x(0) = x0.

Hence

x(t) = eAtx0 +
(∫ t

0
eA(t−s)BBT e−A

T sds
)
λ(0).
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Since x(T ) = 0 we obtain

λ(0) = −
(∫ T

0
e−AsBBT e−A

T s ds
)−1

x0

= −
(
e−AT

∫ T

0
eA(T−s)BBT eA

T (T−s)ds e−A
TT
)−1

x0

= −
(
e−AT

∫ T

0
eAsBBT eA

T sds e−A
TT
)−1

x0

= −eATTQ(T )−1eATx0.

Combining with the expression

u(t) = BT e−A
T tλ(0)

gives the desired expression for the optimal control.

It remains to show that it is indeed optimal. To this end we note that any
control u ∈ Uad satisfies

0 = eATx0 +

∫ T

0
eA(T−t)Bu(t)dt.

Using this identity we find that∫ T

0
〈u(t), u(t)〉dt = −

∫ T

0

〈
u(t), BT eA

T (T−t)Q(T )−1eATx0

〉
dt

= −
∫ T

0

〈
eA(T−t)Bu(t), Q(T )−1eATx0

〉
dt

= −
〈∫ T

0
eA(T−t)Bu(t)dt,Q(T )−1eATx0

〉
=
〈
eATx0, Q(T )−1eATx0

〉
.

This expression is independent of the specific choice of control u ∈ Uad and
so we deduce that, in particular,∫ T

0
〈u(t), u(t)〉dt =

〈
eATx0, Q(T )−1eATx0

〉
.

and, subtracting, we obtain∫ T

0
〈u(t)− u(t), u(t)〉dt = 0.
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From this it follows that

J(u) = J(u+ u− u)

= J(u) + J(u− u)

≥ J(u).

This establishes the desired optimality.

Remarks 6.1.4. It is a consequence of Theorem 6.1.2 that the function u
given in the previous theorem does indeed control the system (3.9) to the
origin at time T . However it is instructive to establish this explicitly. Note
that

x(T ) = eATx0 +

∫ T

0
eA(T−s)Bu(s)ds

= eATx0 −
(∫ T

0
eA(T−s)BBT eA

T (T−s)ds
)
Q(T )−1eATx0

= eATx0 −
(∫ T

0
eAsBBT eA

T sds
)
Q(T )−1eATx0

= eATx0 − eATx0
= 0.

6.2 Matching Data

Consider the system

ẋ = Ax+Bu, x(0) = x0 (6.9a)

y = Dx+ η (6.9b)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, η(t) ∈ Rp and A ∈ Rn×n, B ∈ Rn×m
and D ∈ Rp×n. We no longer impose the control objective that x(T ) = 0.

The data y is a noisy observation of Dx and η is an unknown noise. We
aim to choose the control u so that the solution x to (6.9) best matches the
observed data y ∈ Up = L2

(
[0, T ];Rp

)
and, as in the previous section, is not

large in the L2 sense. Specifically we minimize, for some α > 0,

J(x, u) =
α

2
‖y −Dx‖2 +

1

2
‖u‖2, (6.10)
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where the norms are in Up and Um respectively, subject to the constraint
that (6.1) holds.

Now we would like to characterize the minimizing control u, and the resulting
minimizing state x. To this end, we employ Theorems 2.9.3 and 2.9.4. We
again set X = H1

(
[0, T ];Rn

)
, Un = L2

(
[0, T ];Rn

)
and Z = Un × Rn. Recall

A : X→ Z defined by (2.14) and that Theorem 2.5.6 shows that this operator
has bounded inverse. We also define B as in (6.3). Then we have the problem
of minimizing J given by (6.10) over

Fad =
{

(x, u) ∈ X× Um|Ax+ Bu = g
}
.

Recall the optimality equations from Theorem 2.9.6:

〈Ax+ Bu− g, δp〉 = 0 ∀δp ∈ Z (6.11a)

〈DxJ(x, u) +A∗p, δx〉 = 0 ∀δx ∈ X (6.11b)

〈DuJ(x, u) + B∗p, δu〉 = 0 ∀δu ∈ U. (6.11c)

We have the following result.

Theorem 6.2.1. The problem of minimizing J given by (6.10) over Fad has
a unique solution. Furthermore if control u and state x are given via solution
of the boundary value problem

dx

dt
= Ax+Bu, x(0) = x0

dλ

dt
= −ATλ+ αDT

(
Dx− y), λ(T ) = 0,

and the identity u = BTλ then this pair solves the variational equations
(6.11) for appropriate choice of the Lagrange multiplier p.

Proof. A feasible point is identified by taking u = 0 and x(t) = eAtx0. The
existence of a unique solution then follows from Theorem 2.9.3, since A−1 is
bounded and X and Um are convex (see Exercise 6-1) and of course closed
by the properties of Hilbert space. To charaterize the solution we apply
Theorem 2.9.4, and equations (6.11). The differential equation for x follows
from (6.11a). We write p = (λ, q) ∈ Z.
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To write down (6.11b) we note that

〈A∗p, δx〉 = 〈p,Aδx〉

=

∫ T

0

〈
λ(t),

d

dt
δx(t)−Aδx(t)

〉
dt+ 〈q, δx(0)〉

= −
∫ T

0

〈 d
dt
λ(t) +ATλ(t), δx(t)

〉
dt+ 〈λ(T ), δx(T )〉

+ 〈q − λ(0), δx(0)〉.

Furthermore DxJ(x, u) = αDT
(
Dx− y

)
. Thus equation (6.11b) gives∫ T

0

〈 d
dt
λ(t) +ATλ(t)−αDT

(
Dx(t)− y(t)

)
, δx(t)

〉
dt

− 〈λ(T ), δx(T )〉 − 〈q − λ(0), δx(0)〉 = 0.

From this we deduce that if the Lagrange multipliers are related by q = λ(0)
then we obtain the following weak form of the equation for λ(t):∫ T

0

〈 d
dt
λ(t)+ATλ(t)−αDT

(
Dx(t)−y(t)

)
, δx(t)

〉
dt−〈λ(T ), δx(T )〉 = 0 ∀δx ∈ X.

This is satisfied by the solution of the strong form of the equation given
in the theorem statement. Finally we note that (6.8) shows that equation
(6.11c) gives us

〈u−BTλ, δu〉 = 0, ∀δu ∈ U ;

this equation is satisfied if u = BTλ.

Note that we have not demonstrated that the solution exhibited does indeed
minimize J subject to the desired constraint. We have simply shown that it
satisfies the necessary variational equations given by Theorem 2.9.4.

6.3 Exercises

Exercise 6-1. Show that Xad given by (6.6) is a closed convex subset of X.
Show that X and Um are convex.
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Exercise 6-2. Consider the linear dynamical system in Rn given by

dx

dt
= Ax (6.12)

for some fixed matrix A ∈ Rn×n. Assume that we only have a noisy observa-
tion m0 of the initial condition x(0) = x0 so that we do not know it exactly.
To compensate we are given data y ∈ L2

(
[0, T ];Rp

)
which is supposed to be

a noisy measurement of Dx for some D ∈ Rp×n. Define I : Rn → R+ given
by

I(x0) =
α

2
‖y −DeA·x0‖2 +

1

2
|x0 −m0|2

and note that minimizing I(x0) over all x0 determines an initial condition
which attempts to keep the solution x close to the measurement y and keeps
the initial condition close to the observed initial condition m0. By differen-
tiating I with respect to x0 find this optimal initial condition.

Exercise 6-3. Consider the setting of Exercise 6-2. Use Lagrange mutipliers
to find the initial condition and function x which minimizes

J(x0, x) =
α

2
‖y −Dx‖2 +

1

2
|x0 −m0|2,

for α > 0, subject to the constraint that (6.12) holds. You may assume that
any terms appearing in the resulting variational equations have sufficient
regularity to enable an integration by parts. Demonstrate that the result
agrees with the result obtained in the preceding exercise. Explain why this
is so.

Exercise 6-4. Consider the linear control problem (6.1). Use Lagrange
mutipliers to find the control u which minimizes

J(x0, x, u) =
α

2
|x(T )|2 +

1

2
‖u‖2

for α > 0, subject to the constraint that (6.1) relates x and u. You may
assume that any terms appearing in the resulting variational equations have
sufficient regularity to enable an integration by parts.
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Chapter 7

References

For a concise mathematical introduction to control theory see [7]. This book
covers all of the topics in our course, with the exception of the Kalman
filter. It is the best single reference for this course, apart from these notes.
A more geometric viewpoint on the subject is contained in the book [5]. A
nice engineering treatment of the subject may be found in [1], but beware
that some of the proofs in this book are incomplete. The subject of optimal
control is covered in [4] and [6], and in the on-line lecture notes [2]. The
Kalman filter is studied in [3]; the Wikipedia entry is also a good starting
point for this topic:

http : //en.wikipedia.org/wiki/Kalman filter

Acknowledgements The authors are grateful to Sergios Agapiou, Kui Lin,
Daniel Sanz, Abhishek Shukla and the previous students from this course
for feedback which has improved the notes.
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