Abstract

We study the numerical approximation to the solution of a fourth order singularly perturbed boundary value problem, by the Finite Element Method (FEM). In particular, we consider the hp version of the FEM, in which the mesh size h and the polynomial degree p of the approximating polynomials change to improve accuracy. The solution to such problems typically exhibits boundary layers due to the presence of a small parameter multiplying the highest derivative. Moreover, given that the problem under consideration is of fourth order, the discrete problem is posed in a finite dimensional subspace of the usual Sobolev space H^2; for this reason we have to construct hierarchical hp basis functions that are continuously differentiable, something that is novel. Under the assumption of sufficiently smooth input data, the proposed hp FEM yields an extremely accurate approximation, provided the appropriate mesh-degree combination is used. The method is implemented in MATLAB and our numerical results confirm our conjecture: the method is robust (with respect to the singular perturbation parameter) and converges exponentially fast, as p is increased, when the error is measured in the natural energy norm (associated with the variational problem). An outline of how this can be proved is also discussed.